Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Location is a key requirement when attempting to monitor and map the spread of a disease and GNSS is one of the main tools supporting this. Galileo, currently embedded in over 1.3 billion smartphones and devices worldwide, is helping to increase GNSS accuracy and availability, especially in urban areas. Since the outbreak of the coronavirus earlier this year, many apps have been developed that use GNSS location to monitor the global spread of the virus and to map outbreaks of the COVID-19 disease. GNSS-apps are also proving their usefulness by helping people to implement social distancing in queues and other public spaces.
The European GNSS Agency (GSA)1 is compiling a repository of these apps as a knowledge bank of solutions that are being used to fight the pandemic. If you have developed an app that is already working and being used to map the spread of the coronavirus, to monitor incidences of the disease, or to alert users about possible risky contacts, tell us about it and we will include it in our database. We are also looking for practical apps that facilitate the daily lives of citizens, such as by helping them to manage queues in supermarkets, pharmacies and public spaces or by facilitating the logistics of goods, which has become more complicated in the current situation.
We are looking for apps that are already working and available in app stores. Submit details of your solutions in writing to market@gsa.europa.eu and we will feature them on www.useGalileo.eu/GNSS4Crisis. The goal is for this page to become a toolbox to help authorities, emergency response services, citizens and app developers to understand what resources are currently available and what needs remain unmet.
Watch this: European GNSS Agency: Linking space to user needs
“The coronavirus pandemic is one of the greatest challenges that we are facing as a global society and any effective response will require the use of all available tools. GNSS and apps that leverage GNSS positioning, including Galileo, our ‘made in Europe’ global navigation system, have a key role to play,” said GSA Head of Market Development Fiammetta Diani. “It has always been a core function of the GSA to connect space applications to innovative ideas for the benefit of society. The database we are building now will become a resource for everybody to use, from citizens to organisations and authorities,” she said.
Watch also this: Will Galileo satellites track my phone?
Some examples of apps currently in use include Mapy.cz, a mapping application that has been updated to alert citizens to potential risky encounters through location sharing. User location data is anonymous and the developers are also working to obtain anonymous data about people who tested positive and compare it with the location of users. Advanced algorithms will then make it possible to identify cases of probable contacts with an infected person.
Read this: Space is an enabler of security and defence
Helping people deal with the constraints of lockdown, the Filaindiana (Italian for “single file) web app, which is currently operating only in Lombardy, allows users to check the length of queues in local supermarkets by using real-time crowd-sourced location data from users waiting to enter the supermarkets. This information allows citizens to plan their shopping responsibly and to avoid creating crowds and traffic bottlenecks in certain areas of the city.
The requirement for reliable and robust positioning in these and in similar apps is clear. Various approaches can be used to increase the robustness and precision of the solution. Dual frequency capability, a key Galileo differentiator, enables GNSS receivers to receive two GNSS signals at different frequencies from a satellite. This provides increased reliability to users – if one of the frequency bands fails, the other can be used as backup. Other benefits include a reduced signal acquisition time, increased resistance to multipath interference, and improved accuracy of positioning and timing.
Developers working in Android also have access to GNSS raw measurements. With the release of Android 7 (Nougat) in 2016, Google made GNSS raw measurements available to users and these raw measurements can be used by developers to improve the positioning accuracy of their solutions.
Share with us your apps and services that leverage these and other benefits of GNSS to provide the positioning needed to map, track, cope with and, hopefully, help halt the spread of this disease.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).