info-ctenari_1.png

info-inzerenti_2.png

 

 

 


https://www.arcdata.cz/cs-cz/akce/2024/konference/o-konferenci

 

 

 

 

 

 

 

 

 

Prodej knihy o historii oboru

 

Nabídka učebnice Inženýrské geodézie:

Nabídka učebnice MicroStation

otevrena-data.gif

 

 

 

2016-gi-fb-zememeric-5-6.jpg

 

 

 

 

 

Intersucho.cz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

Reklamní zápalky
- dobrý nápad pro
váš byznys

 

 

 

 

 

  

zprávy

zdroje zpráv:

Earth from Space: Perth, Australia

22.10.2021 10:00   ESA Observing the Earth   Perth, Australia

Perth, Western Australia’s capital and largest city, is featured in this true-colour image captured by the Copernicus Sentinel-2 mission.

20211022_výpadek telekomunikačních služeb

22.10.2021 9:03   ČÚZK - předpisy a opatření   Katastrální úřad pro Středočeský kraj - Katastrální pracoviště Beroun
zveřejnil novou aktualitu: Omezení provozu Z důvodu výpadku telekomunikačních služeb funguje KP dne 22.10.2021 v omezeném režimu.Příjem podání je možný pouze osobně na podatelně KP, správní poplatek je možmé uhradit pouze platbou v hotovosti.

20211022_výpadek telekomunikačních služeb

22.10.2021 9:03   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Stredocesky-kraj/Katastralni-pracoviste/KP-Beroun/O-uradu/Aktuality/20211022_vypadek-telekomunikacnich-sluzeb

Autoliv uses HERE to analyze driving behavior

22.10.2021 9:00   GISCafe.com Webcasts-Webinars   World's largest automotive safety supplier uses HERE location data to enhance its Safety Score, a driving behavior analysis tool for fleet managers …

HERE launches Intelligent Speed Assistance map for automakers to comply with EU regulation

21.10.2021 16:10   GISCafe.com Webcasts-Webinars   HERE ISA Map provides fresh and accurate speed limit information, with comprehensive coverage across the globe Starting in July 2022, new passenger …

Mesa Air Group Becomes First Scheduled Airline to Launch Drone Delivery Business in the U.S. in Partnership with Flirtey

21.10.2021 16:10   GISCafe.com Webcasts-Webinars   RENO, Nev., Oct. 21, 2021 — (PRNewswire) —  Mesa Air Group, Inc. (NASDAQ: MESA), has signed an agreement with aerospace technology …

Draganfly Commences Drone Pilot Training Program at Alabama State University

21.10.2021 16:10   GISCafe.com Webcasts-Webinars   Los Angeles, CA., Oct. 21, 2021 (GLOBE NEWSWIRE) -- Draganfly Inc. (NASDAQ: DPRO) (CSE: DPRO) (FSE: 3U8) (“Draganfly” or the “Company”), an …

BlackSky Adds AllSource Analysis to Its List of Authorized Resellers

21.10.2021 16:10   GISCafe.com Webcasts-Webinars   HERNDON, Va. — (BUSINESS WIRE) — October 21, 2021 —

BlackSky (NYSE: BKSY) adds AllSource Analysis (AllSource) to its list of …

U.S. Army Space and Missile Defense Technical Center Signs Collaborative Research Agreement with Capella Space

21.10.2021 16:10   GISCafe.com Webcasts-Webinars   Capella Space and Army SMDTC will integrate on-demand, persistent SAR service into Army networks and platforms to satisfy tactical user needs for …

ESA moves forward with Destination Earth

21.10.2021 15:45   ESA Observing the Earth  

Earth observation provides a wealth of information to benefit our daily lives. As the demand for satellite data grows to address the challenges of climate change and a growing population, ESA, under the leadership of the European Commission, along with its key European partners, are developing digital replicas of Earth to monitor and simulate both natural and human activity, to enable more sustainable development and support European environmental policies.

Today, at the ESA Council, Member States approved a ‘Contribution Agreement', which paves the way for cooperation with the European Commission on the Destination Earth programme – in the context of the Digital Agenda of the European Union.

ESA moves forward with Destination Earth

21.10.2021 15:45   ESA Observing the Earth  

Earth observation provides a wealth of information to benefit our daily lives. As the demand for satellite data grows to address the challenges of climate change and a growing population, ESA, under the leadership of the European Commission, along with its key European partners, are developing high precision digital models of Earth to monitor and simulate both natural and human activity, to enable more sustainable development and support European environmental policies.

Today, at the ESA Council, Member States approved a ‘Contribution Agreement', which paves the way for cooperation with the European Commission on the Destination Earth initiative, in the context of the Digital Agenda of the European Union.

Galileo: the first ten years

21.10.2021 12:30   ESA Navigation   Video: 00:01:25

Europe’s own satellite navigation system, Galileo, has become the world’s most precise, delivering metre-level accuracy, available anywhere on Earth. It is also saving lives, relaying distress calls for search and rescue. Today there are 26 Galileo satellites in orbit 23 222 km over our heads; the first of them were launched on 21 October 2011, with nine more launches in the following years. The satellites in space are supported by a globe-spanning ground segment. The system as a whole is set to grow, with the first of 12 ‘Batch 3’ about to join the current satellites in orbit and new ‘Galileo Second Generation’ satellites in development.

Galileo has been financed by the EU and developed by ESA, with services delivered by EUSPA.

Nedostupné produkční prostředí ISÚI

21.10.2021 11:44   ČÚZK   /ruian/Editacni-agendovy-system-ISUI/Provozni-informace-a-odstavky/Archiv-PROD/Nedostupne-produkcni-prostredi-ISUI-(25)

Aliance a CzechTrade zvou na online konference k obchodním příležitostem v Asii

21.10.2021 11:36   UAVA  

Aliance pro bezpilotní letecký průmysl zve ve spolupráci s CzechTrade na sérii online konferencí na téma obchodních příležitostí v bezpilotním leteckém průmyslu v Asii! Akce je určena pro české firmy ze širokého spektra bezpilotního leteckého průmyslu. V jednotlivých blocích se zaměříme na možnosti v Singapuru, Číně, Thajsku, Vietnamu a Indii. Přihlaste se včas, účast je […]

The post Aliance a CzechTrade zvou na online konference k obchodním příležitostem v Asii appeared first on UAV Aliance pro bezpilotní letecký průmysl.

Omezení výpůjční doby 21.-22.10.2021 [Knihovna geografie, byTopic]

21.10.2021 11:00   Katedra aplikované geoinformatiky a kartografie Přf UK   Z důvodu nemoci jsme nuceni uzavřít knihovnu ve čtvrtek 21. října již v 15,00 a v pátek 22. října ve 13,00. Děkujeme za pochopení.

Three new Directors join the European Space Agency’s Executive Board

21.10.2021 10:50   ESA Observing the Earth  

As of today, ESA has appointed three new Directors - for Commercialisation, Industry and Procurement, Earth Observation Programmes and Navigation. The new Directors were appointed by ESA Council at its meeting on 21 October; they will support the Director General with responsibility for activities and overall objectives in their respective directorates.

Jak pracovníci Pražské teplárenské provádějí kontroly šachet?

21.10.2021 10:20   blog ARCDATA   Rozsáhlou síť technických zařízení Pražské teplárenské je třeba v pravidelných intervalech kontrolovat a revidovat. Významným pomocníkem je v tomto procesu mobilní GIS.

Galileo 10th launch anniversary: The day the European Union broke through the GNSS industry

21.10.2021 9:14   European GNSS Agency  
A Soyuz rocket carrying the first two Galileo operational satellites.
Published: 
21 October 2021

On October 21, 2011 Europe took a major step in its space history by launching the first two operational Galileo satellites at 12h30 CET from Kourou, French Guiana. That day the EU came one step closer to having its own Global Navigation Satellite System.

Galileo is the European Union navigation and positioning system, and currently, the world’s most precise global navigation satellite system (GNSS), serving more than 2.3 billion users globally. To date, the constellation consists of 26 satellites orbiting the Earth at an altitude of around 23,000 km, is 100% financed by the EU and is supported by a range of terrestrial centers and sensors across the globe. Since the launch of the services in December 2016, the system has been going from strength to strength to become the backbone of a series of value-adding services that ensure the wellbeing of EU citizens and guarantee the Union’s autonomy and sovereignty. 

Galileo is impacting the European economy as 11% of the EU GDP is enabled by satellite navigation according to experts. Thanks to the EU satellite navigation system, the Union has been able to boost its digitization strategy, support the EU Green Deal, and drive economic growth. For instance, the use of Galileo in vehicles can reduce journey times by more than 10% and thus contribute to reducing emissions of harmful and polluting substances. Throughout the years, the European Union saw a set of technological breakthroughs from the eCall implementation in newly produced cars to the Galileo Return Link (RLS), a unique feature of the Galileo Search and Rescue service. 

One step closer to Full Operational Capability (FOC)

On December 1st, 2021, two new satellites are expected to lift off from Kourou French Guyana on a Soyuz rocket at 00:35 (GMT). The launch of these satellites will bring the programme one step closer to its Full Operational Capability (FOC). This launch takes place few months after the new Space Regulation entered into force. The Regulation brings an improved governance between the European space actors and provides the necessary budget certainty for the next seven years.

Galileo is continuing to evolve. New services, currently under testing, will soon be available to users opening new market opportunities across various industries. 

With the Galileo High Accuracy Service (HAS), Galileo will pioneer a worldwide, free high-accuracy positioning service aimed at applications that require higher performance such as drones and autonomous cars.

The Open Service Navigation Message Authentication (OSNMA) is set to contribute to the detection of GNSS attacks. This forthcoming service is an authentication mechanism that allows GNSS receivers to verify the authenticity of GNSS information, making sure that the data received are indeed from Galileo and have not been modified in any way. 

Galileo grows strong thanks to a robust 3D collaboration

With the European Commission at the helm, Galileo is the result of unprecedented cooperation between, legislators, space industry actors and above all EU Member States. The European Space Agency has been a trusted partner in terms of designing the system architecture while the European Union Agency for the Space Programme (EUSPA) as exploitation manager, guarantees the provision of safe, secure, state-of-the-art services around the clock to EU citizens but also to a growing group of users around the world. 

"At EUSPA, we are committed to taking the EU Space to the next level. Collaboration between EUSPA, European Commission and ESA is the basis for it. Each partner has unique and complementary functions and competencies," says Rodrigo da Costa, EUSPA Executive Director. 

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

A Soyuz rocket carrying the first two Galileo operational satellites.

Living Planet Symposium 2022: time for abstracts

21.10.2021 9:05   ESA Observing the Earth   Living Planet Symposium 2022

ESA’s next Living Planet Symposium is set to take place on 23–27 May 2022 in Bonn, Germany. In gearing up for this prestigious event, it’s now time to submit abstracts to ensure a much sought-after slot to present topics such as the latest scientific findings on our planet, novel Earth observing technologies and new opportunities emerging in the rapidly changing sector of Earth observation.

HLEDÁME DO TÝMU: Operátorka GIS s ArcGIS QGIS (HPP)

20.10.2021 17:42   TopGis   Hledáme novou posilu do našeho týmu. Jsme společnost s dlouholetou praxí v oboru geoinformačních technologií. Provozujeme vlastní datové centrum s jedinečnými mapovými podklady ČR a mapovou aplikaci GisOnline.cz. Co musíte umět? Co Vám nabízíme: Zaujala Vás naše nabídka? Ozvěte se nám! Pošlete prosím svůj životopis na kariera@topgis.cz nebo dejte vědět Vašim známým. Pro umožnění výběrového řízení na

Alpine 4 Holdings (ALPP) Debuts on the Nasdaq and Announces the Acquisition of Identified Technologies, a Drone Mapping Software Company

20.10.2021 17:21   GISCafe.com Webcasts-Webinars   PHOENIX, Oct. 20, 2021 — (PRNewswire) —  Alpine 4 Holdings, Inc. (Nasdaq: ALPP), a leading operator and owner of small market …

Esri Partners with The Ray to Map Solar Energy Hot Spots

20.10.2021 17:15   GISCafe.com Webcasts-Webinars   New Tool Enables Departments of Transportation to Analyze Rights-of-Way for Zero-Carbon Electric Grid Expansion
REDLANDS, Calif. — (BUSINESS …

Swift Navigation Honored As “Fleet Management Technology Company of the Year”

20.10.2021 17:15   GISCafe.com Webcasts-Webinars   SAN FRANCISCO, Oct. 20, 2021 (GLOBE NEWSWIRE) -- Swift Navigation, a San Francisco-based tech firm redefining GNSS (Global Navigation Satellite …

DGT Associates Launches Owned Subsurface Mobile Mapping System

20.10.2021 17:15   GISCafe.com Webcasts-Webinars   Solution Enables Safer, Faster, More Accurate Capture of Underground Environment
BOSTON — (BUSINESS WIRE) — October 20, 2021 —

DGT …

Lumotive Names Dr. Sam Heidari as CEO to Lead Lidar Innovator’s Next Stage of Growth

20.10.2021 17:15   GISCafe.com Webcasts-Webinars   SEATTLE, Oct. 20, 2021 (GLOBE NEWSWIRE) -- Lumotive, a leading developer of solid-state lidar systems for automotive, industrial and consumer …

Movitý majetek - PC, notebook a monitory

20.10.2021 14:26   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Pardubicky-kraj/Nabidky-majetku/Movity-majetek-PC,-notebook-a-monitory

Movitý majetek - PC, notebook a monitory

20.10.2021 14:26   ČÚZK - předpisy a opatření  
Katastrální úřad pro Pardubický kraj nabízí nepotřebný majetek k odkupu. Jedná se o PC notebook a monitory

Movitý majetek - PC, notebook a monitory

Geodet/ka

20.10.2021 12:52   ČÚZK - předpisy a opatření   Zeměměřický úřad
vypisuje výběrové řízení na místo
Geodet/ka

Geodet/ka

20.10.2021 12:52   ČÚZK - volná místa   Zeměměřický úřad vypisuje výběrové řízení na místo Geodet/ka

Geodet/ka

20.10.2021 12:52   Zeměměřický úřad   Zeměměřický úřad
vypisuje výběrové řízení na místo
Geodet/ka

Geodet/ka

20.10.2021 12:52   ČÚZK   /Urady/Zememericky-urad/Uredni-deska/Oznameni-a-jina-uredni-sdeleni/Volna-mista/Geodet-ka

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:02   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Žatec zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.zatec@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:02   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Zatec/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:02   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Teplice zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.teplice@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:02   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Teplice/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:01   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Rumburk/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:01   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Rumburk zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.rumburk@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:00   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Most/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 12:00   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Most zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.most@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:59   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Louny/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:59   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Louny zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.louny@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:59   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Litomerice/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:59   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Litoměřice zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.litomerice@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:57   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Chomutov/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:57   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Chomutov zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.chomutov@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:56   ČÚZK   /Urady/Katastralni-urady/Katastralni-urady/Katastralni-urad-pro-Ustecky-kraj/Katastralni-pracoviste/KP-Decin/O-uradu/Aktuality/20211020-zruseni-distribucni-skupiny-VFK-k-1-11

20211020 - zrušení distribuční skupiny VFK k 1.11.2021

20.10.2021 11:56   ČÚZK - předpisy a opatření   Katastrální úřad pro Ústecký kraj - Katastrální pracoviště Děčín zveřejnil novou aktualitu: Dne 1.11.2021 bude zrušena mailová distribuční adresa vfk.decin@cuzk.cz sloužící pro součinnost katastrálního pracoviště při vyhotovování geometrických plánů.

20210120 - Statistické údaje

20.10.2021 8:35   ČÚZK - aktuality v resortu    Zveřejněny statistické údaje za 3. čtvrtletí roku 2021 o vybraných transakcích s nemovitostmi evidovanými v KN.

20210120 - Statistické údaje

20.10.2021 8:35   ČÚZK   /Aktuality-resort/2021/20210120-Statisticke-udaje-(1)

20210120 - Statistické údaje

20.10.2021 8:35   ČÚZK - předpisy a opatření   Český úřad zeměměřický a katastrální zveřejnil novou aktualitu:  Zveřejněny statistické údaje za 3. čtvrtletí roku 2021 o vybraných transakcích s nemovitostmi evidovanými v KN.

SatLab New Product | Freyja Launch Meeting on Facebook

20.10.2021 3:49   Satlab Geosolutions  

SatLab Freyja, The Compact RTK with Advanced IMU Sensor. SatLab Freyja is an innovative GNSS RTK Receiver that promises a new RTK experience for land survey users.  Meet our New Product | Freyja Launch Meeting We are very proud to announce the launch of Freyja. With an advanced IMU sensor, the Freyja GNSS RTK offers […]

The post SatLab New Product | Freyja Launch Meeting on Facebook appeared first on SatLab – Global Satellite Positioning Solutions.

9. Mezinárodní geografické kolokvium - Danišovce 2021

20.10.2021 0:00   Geografický ústav MU  

Zveme Vás na 9. Mezinárodní geografické kolokvium, které se koná ve dnech 20.-22. října 2021 v obci Danišovce u Spišské Nové Vsi.

Bližší informace naleznete ZDE.

Geo Week Conference Program and Speaker Lineup Announced

19.10.2021 20:27   GISCafe.com Webcasts-Webinars   125+ speakers and 50+ sessions confirmed for the 2022 edition of Geo Week in Denver, CO
PORTLAND, Maine, Oct. 19, 2021 — (PRNewswire) — …

AgEagle to Acquire senseFly from Parrot

19.10.2021 17:23   GISCafe.com Webcasts-Webinars   WICHITA, Kan. and PARIS and LAUSANNE, Switzerland, Oct. 18, 2021 (GLOBE NEWSWIRE) -- AgEagle Aerial Systems Inc. (NYSE American: UAVS) …

Trimble Releases Turnkey Autonomous Robotic Scanning Solution

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   Boston Dynamics' Spot Robot Fully Integrated with the Trimble X7 3D Laser Scanner and Trimble FieldLink Software Now Available as a Complete Solution …

Spire Global Launches Maritime 2.0 - a Milestone Data Services Update Supported by GraphQL

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   Space-based data addresses port congestion, saves fuel for maritime vessels and streamlines today’s strained global supply chains
VIENNA, Va. …

Wejo Integrates With Microsoft Mapping Services to Provide Real-Time Transportation Data

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   Wejo’s Proprietary Data to Create Real-Time Mapping Solutions
MANCHESTER, England — (BUSINESS WIRE) — October 19, 2021 —

Wejo, a …

Bad Elf Bundles ProStar's PointMan Data Collection Software with the Bad Elf Flex™ GNSS Receiver

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   WEST HARTFORD, Conn., Oct. 19, 2021 — (PRNewswire) —  Bad Elf, LLC announces that all current and future Bad Elf Flex purchases …

Woolpert Awarded 2 Michigan Statewide Imagery Contracts, Partnering with Planet, EagleView

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   The three-year contracts will procure satellite and oblique imagery for multiple infrastructure applications.
LANSING, Mich., Oct. 19, 2021 — …

Cartegraph Celebrates 2020-21 High-Performance Operations, Flag Forward Award Winners

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   DUBUQUE, Iowa — (BUSINESS WIRE) — October 19, 2021 —

Cartegraph, a leader in infrastructure management software, is pleased to …

Fortem DroneHunter Successfully Takes Down Target Drone at Norway's Avinor Oslo Airport in Landmark Test Event

19.10.2021 17:22   GISCafe.com Webcasts-Webinars   For the first time globally, international police intercepted drones at an airport without stopping traffic
PLEASANT GROVE, Utah, Oct. 19, 2021 …

Septentrio partners with ArduSimple, bringing reliable GPS/GNSS to emerging applications

19.10.2021 16:47   GISCafe.com Webcasts-Webinars   The mosaic-X5 and mosaic-H modules are being integrated into ArduSimple’s new evaluation kits, making resilient cm-level positioning easily …

Humans to blame for warming lakes

19.10.2021 16:20   ESA Observing the Earth   Lake Ontario temperature

While the climate crisis is, unfortunately, a reality, it is all too easy to assume that every aspect of our changing world is a consequence of climate change. Assumptions play no role in key environmental assessments and mitigation strategies such as we will see in the upcoming UN climate change COP-26 conference – it’s the science and hard facts that are critical. New research published this week is a prime example of facts that matter. Using model projections combined with satellite data from ESA’s Climate Change Initiative, this latest research shows that the global rise in the temperature of lake water and dwindling lake-ice cover can only be explained by the increase in greenhouse gas emissions since the industrial revolution – in other words, humans are clearly to blame. 

20211019 - VŘ Podpora uživatelů

19.10.2021 15:21   ČÚZK - předpisy a opatření   Český úřad zeměměřický a katastrální zveřejnil novou aktualitu: Oznámení o vyhlášení výběrového řízení na obsazení služebního místa odborný referent/vrchní referent - Podpora uživatelů.

20211019 - VŘ Podpora uživatelů

19.10.2021 15:21   ČÚZK   /Aktuality-resort/2021/20211019-VR-Podpora-uzivatelu

20211019 - VŘ Podpora uživatelů

19.10.2021 15:21   ČÚZK - aktuality v resortu   Oznámení o vyhlášení výběrového řízení na obsazení služebního místa odborný referent/vrchní referent - Podpora uživatelů.

20211019 - VŘ Správce DMVS

19.10.2021 15:19   ČÚZK - předpisy a opatření   Český úřad zeměměřický a katastrální zveřejnil novou aktualitu: Oznámení o vyhlášení výběrového řízení na obsazení služebního místa rada/odborný rada - Správce DMVS.

20211019 - VŘ Správce DMVS

19.10.2021 15:19   ČÚZK   /Aktuality-resort/2021/20211019-VR-Spravce-DMVS

20211019 - VŘ Správce DMVS

19.10.2021 15:19   ČÚZK - aktuality v resortu   Oznámení o vyhlášení výběrového řízení na obsazení služebního místa rada/odborný rada - Správce DMVS.

Odborný referent/vrchní referent - Podpora uživatelů

19.10.2021 15:05   ČÚZK - volná místa   Český úřad zeměměřický a katastrální vypisuje výběrové řízení na místo Odborný referent/vrchní referent - Podpora uživatelů

Odborný referent/vrchní referent - Podpora uživatelů

19.10.2021 15:05   ČÚZK - předpisy a opatření   Český úřad zeměměřický a katastrální
vypisuje výběrové řízení na místo
Odborný referent/vrchní referent - Podpora uživatelů

Odborný referent/vrchní referent - Podpora uživatelů

19.10.2021 15:05   ČÚZK   /Urady/Cesky-urad-zememericky-a-katastralni/Uredni-deska/Oznameni-a-jina-uredni-sdeleni/Volna-mista/DMS/Odborny-referent-vrchni-referent-Podpora-uzivate

Příležitost k zaměstnání: Geodet – Kartograf železniční dopravní cesty

19.10.2021 14:04   Blogující geomatici - FAV ZČU  

Podrobné informace v přiloženém obrázku.

Kontaktní osoba:

Lucie Kühnelová, oddělení průřezových činností

tel: 607 099 191, e-mail: kuhneloval@spravazeleznic.cz



Vyhlášení výběrového řízení: Referent/ka zeměměřictví a katastru nemovitostí

19.10.2021 14:01   Blogující geomatici - FAV ZČU  

 Detailní popis tohoto výběrového řízení pro místo Referent/ka zeměměřictví a katastru nemovitostí v rámci Zeměměřického úřadu v Praze najdete na: https://www.cuzk.cz/getattachment/7536c59f-3bc8-4a37-9136-ddd08ce23cbe/Referent-ka-zememerictvi-a-katastru-nemovitosti-(1.aspx

Územní plánování v Česku je zdlouhavé. S pochopením návrhů pomůže veřejnosti využití mapových aplikací a 3D technologií (TZ)

19.10.2021 8:11   GISportal.cz  

Územní plány jsou pro města a obce v Česku zásadními dokumenty, které ovlivňují budoucí směřování sídel na mnoho let dopředu. Jejich schvalování je zdlouhavým a náročným procesem a zejména laická veřejnost v množství různých dokumentů často tápe. S pochopením návrhů nových územních plánů a lepší orientaci v nich by mělo pomoci zapojení moderních technologií – využití mapových aplikací a […]

The post Územní plánování v Česku je zdlouhavé. S pochopením návrhů pomůže veřejnosti využití mapových aplikací a 3D technologií (TZ) appeared first on GISportal.cz.

Územní plánování v Česku je zdlouhavé. S pochopením návrhů pomůže veřejnosti využití mapových aplikací a 3D technologií (TZ)

19.10.2021 8:11   GISportal.cz  

Územní plány jsou pro města a obce v Česku zásadními dokumenty, které ovlivňují budoucí směřování sídel na mnoho let dopředu. Jejich schvalování je zdlouhavým a náročným procesem a zejména laická veřejnost v množství různých dokumentů často tápe. S pochopením návrhů nových územních plánů a lepší orientaci v nich by mělo pomoci zapojení moderních technologií – využití mapových aplikací a […]

The post Územní plánování v Česku je zdlouhavé. S pochopením návrhů pomůže veřejnosti využití mapových aplikací a 3D technologií (TZ) appeared first on GISportal.cz.

Proven Drone-Based Automatic Dent Inspection Maps an Entire Rafale Fighter Jet in Just One Hour

18.10.2021 17:16   GISCafe.com Webcasts-Webinars   Experience the flying dentCHECK at this year's MRO Europe in Amsterdam, booth #3080C and #9059.
CONSTANCE, Germany and RANCHO CUCAMONGA, Calif., Oct. …

GeoComm Earns Esri Partner Network Release Ready Specialty Designation

18.10.2021 17:16   GISCafe.com Webcasts-Webinars   GeoComm is pleased to announce their recognition by Esri as a Release Ready Specialty Esri Partner Network partner which is awarded to partners who …

Aktualizovaný dokument Co přinesou digitální technické mapy obcím

18.10.2021 14:48   ČÚZK - předpisy a opatření   Na stránce Informace pro obce byl zveřejněn aktualizovaný dokument "Co přinesou digitální technické mapy obcím a jaké jsou jejich povinnosti?" dokument ve formátu PDF. Text je nyní zveřejněn ve znění schváleném Koordinační radou správců DMVS a DTM.

Volná místa v ZÚ – správa ZABAGED

18.10.2021 11:09   Česká kartografická společnost   Zeměměřičský úřad hledá dva vysokoškoláky geografického/geodetického zaměření pro aktualizaci a rozvoj dat Základní báze geografických dat.  Obě služební místa naleznete na vývěsce ZÚ pod názvem Referent zeměměřictví a katastru nemovitosti. 

Volná místa v ZÚ – správa ZABAGED

18.10.2021 11:09   Česká kartografická společnost   Zeměměřičský úřad hledá dva vysokoškoláky geografického/geodetického zaměření pro aktualizaci a rozvoj dat Základní báze geografických dat. Více informací zde. Oficiální informace k obou místech a přihlášky naleznete na vývěsce ZÚ pod názvem Referent zeměměřictví a katastru nemovitosti. 

Nedostupné produkční prostředí ISÚI

18.10.2021 11:02   ČÚZK   /ruian/Editacni-agendovy-system-ISUI/Provozni-informace-a-odstavky/Archiv-PROD/Nedostupne-produkcni-prostredi-ISUI-(24)

Pracovní místa na Zeměměřickém úřadě

18.10.2021 10:41   Česká kartografická společnost   Na Zeměměřickém úřadě hledají nové kolegy, a to konkrétně dva vysokoškoláky geografického/geodetického zaměření pro aktualizaci a rozvoj dat Základní báze geografických dat. Obě jsou služební místa pod názvem Referent zeměměřictví a katastru nemovitosti. Další volná pozice je také pro geografa/geografku s požadavkem na středoškolské vzdělání. Podrobnosti na webových stránkách.

Volby 2021 v mapách

18.10.2021 9:38   ARCDATA  

Ve spolupráci s politology Univerzity Palackého v Olomouci – Jakubem Lyskem a Tomášem Lebedou – jsme vytvořili soubor map shrnujících některá zajímavá fakta z letošních parlamentních voleb, a to zejména v porovnání s minulými volbami do poslanecké sněmovny v roce 2017. Můžete si tak například prohlédnout, jaká byla volební účast a jak výsledky voleb ovlivnila, nebo si porovnat zisky tří nejsilnějších stran (respektive koalic) s rokem 2017.

Volební analýzu najdete na adrese https://www.arcdata.cz/volby2021

Drone Nerds Is Now Offering the Emesent Hovermap Autonomous Mapper

15.10.2021 21:24   GISCafe.com Webcasts-Webinars   Dania Beach, FLA., Oct. 15, 2021 (GLOBE NEWSWIRE) -- Drone Nerds, one of the largest North American drone solutions providers, has announced the …

Specialista GIS pro ZABAGED

15.10.2021 19:30   Katedra geoinformatiky UP Olomouc  

Volné pozice pro dva vysokoškoláky geografického/geodetického zaměření pro aktualizaci a rozvoj dat Základní báze geografických dat.  Obě jsou služební místa pod názvem Referent zeměměřictví a katastru nemovitosti. Podrobnější informace naleznete na: https://www.cuzk.cz/Urady/Zememericky-urad/Volna-mista.aspx

The post Specialista GIS pro ZABAGED appeared first on Katedra geoinformatiky.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.

EUSPA-funded SIA project is nearing its completion with promising results for intelligent railway asset management

15.10.2021 14:23   European GNSS Agency  
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
Published: 
15 October 2021

Space based services will help reduce 15% of railway maintenance costs, 25% of maintenance unscheduled events and 15% of derailments associated with the rail-wheel interface. To tackle this challenge, the SIA consortium brings together multidisciplinary and cross sector partners (EGNSS technology providers, research centres, IT companies and railway stakeholders) that will co-design EGNSS solutions truly adapted to the needs of the rail sector.

Railway infrastructure and vehicle maintenance are estimated to cost over 25 billion Euros per year in Europe, and this figure is rising1 . The distribution of maintenance expenses varies in different countries and organizations. However, in relation to the railway infrastructure, track expenses represent between 40%-70% of the operational expenses, where the defects associated with the rails and catenary are the most significant (30% and 50% respectively). Other major maintenance costs relate to vehicle equipment such as the wheelset and pantograph (typically between 30%-50% and 5%-10% of the overall vehicle’s maintenance cost respectively). These figures are similar for all the infrastructure managers (IMs) and train operating companies (TOCs), which in total accounts for 330 organizations in the EU and 1500 organisations worldwide, therefore incurring over 8 billion Euros in recurrent expenses in the EU.

SIA project (System for vehicle-infrastructure Interaction Assets health status monitoring) has been funded by EUSPA since 2018 with the objective of developing four ready-to-use new services, to provide prognostic information about the health status of railways’ most demanding assets in terms of maintenance costs, at the points of the interaction between the vehicle and the infrastructure (wheelset, pantograph, rail, and catenary).

iCatMon is a service oriented towards IMs and maintenance subcontractors. The service provides information about the status of the overhead line (e.g. geometry of the Overhead Contact Wire - OCW).

iPantMon is intended for TOCs, providing information about the status of the pantograph during its interaction with the OCW (e.g. contact dynamics).

iWheelMon is also intended for TOCs, this service provides information about the health status of the wheelset (e.g. wheel diameter, out-of-roundness).

iRailMon is a service oriented towards IMs and maintenance subcontractors, the service provides information about defects on the rails (e.g. short-wave irregularities).

To enable these services, a modular system with all of the required components from vehicle sensor networks to KPI visualization for the end user has been developed. The value proposition of SIA is to develop these components in the most cost-effective way, i.e. with the use of cost-effective sensors and systems. 

The SIA components include a sub-system for the recording of axle-box acceleration (ABA) data that can be related to defects in the track and wheelset. Another sub-system includes sensors that provide signals to characterize the interaction between the pantograph and catenary. EGNSS- based localization is performed, with real time processing of GNSS signals in multiple frequency bands including Galileo and map-supported refinement using Kalman filter methods in the back-office. A central datahub provides the onboard data management and communicates with the back-office part of SIA, for instance, to send events or detections in the monitoring data. The axle-box acceleration and pantograph data enriched with position information are further processed using component degradation models and analysis algorithms in the back-office. Finally, relevant asset key performance indicators (KPI) are displayed to the user in the visualization platform, with a rich functionality to illustrate the asset status and its evolution using different capabilities. 

To validate the results, pilot tests have been carried out since October 2020 in three different scenarios: one of them coordinated by OBB (Österreichische Bundesbahnen), the Austrian operator, using both inspection vehicles and regular in-service trains throughout Austrian rail network; another scenario coordinated by VIAS, a Spanish maintenance subcontractor, using for the installation of the system a maintenance vehicle circulating over Madrid-Córdoba high-speed line; and the third scenario was coordinated by FGC (Ferrocarrils de la Generalitat de Catalunya), a Spanish regional TOC, using regular in-service trains throughout its whole network.

The results obtained so far are very promising. The aim is to validate the use of low-cost on-board systems to assess the health status of infrastructure and vehicle assets using the four developed services. Part of this success is due to the use of digital twins and AI technologies to extract health related KPIs. Some of the activities within the project contributed to the creation of a tech startup (MainRail Solutions), dedicated to the management of railway infrastructure. This start-up, created by Ceit and Inycom (linked third party of INGECONTROL) in 2020, has initiated its activities by deploying its first commercial references, e.g. tranvía Zaragoza (Spain)  and SFM (Mallorca Railways, Spain) and PoC (Proof of Concept) pilots with other TOCs and IMs in Spain.

The implementation of the SIA system in regular service trains will enable a reduction in the costs associated with maintenance, while keeping the required levels of safety and service availability. The low-cost nature of the on-board equipment and the capabilities brought by the new services can potentially lead to reductions of 10% in the cost of the maintenance associated to the infrastructure’s assets, thanks to a reduction of unscheduled actions and MTTR (Mean Time To React).

Media note: This feature can be republished without charge provided the European Union Agency for the Space Programme (EUSPA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the EUSPA website (http://www.euspa.europa.eu).

  • 1. Using analytics to get European rail maintenance on track, McKinsey & Company, 2020
SIA has as main objective the development of four ready-to-use new services (iWheelMon, iRailMon, iPantMon and iCatMon) providing prognostic information on the health status of the railway’s most demanding assets in terms of maintenance costs.
« | 1 | .. | 156 | 157 | 158 | 159 | 160 | .. | 715 | »
© geoinformace.cz CMS Toolkit