Ve středu 14. června 2017 se v prostorách společnosti GEPRO uskuteční seminář určený především zpracovatelům komplexních pozemkových úprav využívajících systém PROLAND.… >>

Thanks to funding provided by the European GNSS Agency (GSA), NextJet’s fleet of SAAB 340 regional aircraft will soon be able to utilise EGNOS-based LPV landing procedures.
On 20 April 2017, a SAAB 340 aircraft equipped with a new EGNOS-based navigation system successfully completed a series of EGNOS-enabled localiser performance with vertical guidance (LPV) approaches and related tests. The flight, which took off from and landed at Denmark’s Billund Airport (BLL), was conducted by a NextJet crew, who were joined by two engineers from Scandinavian Avionics. NextJet is one of Sweden’s largest regional airlines. Scandinavian Avionics are the designers behind the installation of the EGNOS-capable Universal Avionics UNS-1Lw FMS with LPV monitor in the SAAB 340 aircraft.
The 3 hour and 23 minute flight included a series of LPV approaches at Denmark’s Aarhus Airport (AAR), along with testing PRNAV (precision area navigation) with SID (standard instrument departure route) and STARs (standard arrival route) at Norway’s Kristiansand Airport (KRS).
Watch this: A playback of the Nextjet test flight
The test flight was performed without incident. The NextJet crew reported that they were very happy with how the system performed, noting that they can already see how NextJet’s operations will benefit from LPV approaches. A second plane will undergo an avionics upgrade in May, and the airline plans to have its entire fleet of 10 SAAB 340 aircraft upgraded by the end of 2018.
EGNOS, which was designed for aviation, creates more access to small and regional airports such as BLL, AAR and KRS – increasing safety and facilitating business across Europe. For airports like these, EGNOS serves as a suitable alternative to traditional Instrument Landing Systems (ILS). Unlike ILS, which depend on expensive ground-based equipment, EGNOS utilises geostationary satellites and a network of ground stations to receive, analyse and augment GPS signals. With EGNOS, these satellite signals become suitable for such safety-critical applications as aircraft landings.
Read more: AERO 2017 show EGNOS benefits
The currently available EGNOS LPV 200 service level provides vertical guidance that enables reaching a decision height as low as 200 feet. This is a capability similar to what is provided by ILS, but without the same financial burden of installing, maintaining and calibrating the ground equipment.
“We are proud to receive GSA funding and excited to introduce the EGNOS LPV into our operation. NextJet operation is mainly concentrated at small airports where ILS usually isn’t available on multiple runways. The SAAB 340 fleet will be much more flexible and the number of weather-related delays and cancellations will decrease dramatically at those destinations”, NextJet Engineering Manager Jonas Malmqvist confirmed.
Of course having these procedures isn’t very useful if nobody can use them. Hence the GSA’s commitment to working with aircraft operators and avionics manufacturers like NextJet and Scandinavian Avionics to ensure the availability of EGNOS-based solutions for the most common aircraft models.
NextJet received GSA funding in order to gain the required Supplemental Type Certification (STC) to upgrade the avionics on its fleet of 10 SAAB 340 aircraft with EGNOS capability. STC is a national aviation authority-approved major modification or repair to an existing type certified aircraft, engine or propeller. Since it is adding to an existing type certificate, it is considered to be supplemental. Thus, before an older aircraft like the SAAB 340 can have its avionics upgraded to EGNOS capability, that particular upgrade must first receive STC.
Read this: EGNOS to get bigger footprint in Eastern Europe
NextJet was funded under the GSA’s Aviation Call 2015. The GSA Aviation Calls aim to foster EGNOS adoption in the European civil aviation sector. Grants are given to support projects that enable users to equip and use their aircraft fleet with GPS/SBAS-enabled avionics and to allow Air Navigation Service Providers (ANSP) and aerodromes/heliports to implement EGNOS-based operations in Europe.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Thanks to funding provided by the European GNSS Agency (GSA), NextJet’s fleet of SAAB 340 regional aircraft will soon be able to utilise EGNOS-based LPV landing procedures.
On 20 April 2017, a SAAB 340 aircraft equipped with a new EGNOS-based navigation system successfully completed a series of EGNOS-enabled localiser performance with vertical guidance (LPV) approaches and related tests. The flight, which took off from and landed at Denmark’s Billund Airport (BLL), was conducted by a NextJet crew, who were joined by two engineers from Scandinavian Avionics. NextJet is one of Sweden’s largest regional airlines. Scandinavian Avionics are the designers behind the installation of the EGNOS-capable Universal Avionics UNS-1Lw FMS with LPV monitor in the SAAB 340 aircraft.
The 3 hour and 23 minute flight included a series of LPV approaches at Denmark’s Aarhus Airport (AAR), along with testing PRNAV (precision area navigation) with SID (standard instrument departure route) and STARs (standard arrival route) at Norway’s Kristiansand Airport (KRS).
Watch this: A playback of the Nextjet test flight
The test flight was performed without incident. The NextJet crew reported that they were very happy with how the system performed, noting that they can already see how NextJet’s operations will benefit from LPV approaches. A second plane will undergo an avionics upgrade in May, and the airline plans to have its entire fleet of 10 SAAB 340 aircraft upgraded by the end of 2018.
EGNOS, which was designed for aviation, creates more access to small and regional airports such as BLL, AAR and KRS – increasing safety and facilitating business across Europe. For airports like these, EGNOS serves as a suitable alternative to traditional Instrument Landing Systems (ILS). Unlike ILS, which depend on expensive ground-based equipment, EGNOS utilises geostationary satellites and a network of ground stations to receive, analyse and augment GPS signals. With EGNOS, these satellite signals become suitable for such safety-critical applications as aircraft landings.
Read more: AERO 2017 show EGNOS benefits
The currently available EGNOS LPV 200 service level provides vertical guidance that enables reaching a decision height as low as 200 feet. This is a capability similar to what is provided by ILS, but without the financial burden of financing, installing, maintaining and calibrating the ground equipment.
“We are proud to receive GSA funding and excited to introduce the EGNOS LPV into our operation. NextJet operation is mainly concentrated at small airports where ILS usually isn’t available on multiple runways. The SAAB 340 fleet will be much more flexible and the number of weather-related delays and cancellations will decrease dramatically at those destinations”, NextJet Engineering Manager Jonas Malmqvist confirmed.
Of course having these procedures isn’t very useful if nobody can use them. Hence the GSA’s commitment to working with aircraft operators and avionics manufacturers like NextJet and Scandinavian to ensure the availability of EGNOS-based solutions for the most common aircraft models.
NextJet received GSA funding in order to gain the required Supplemental Type Certification (STC) to upgrade the avionics on its fleet of 10 SAAB 340 aircraft with EGNOS capability. STC is an aviation authority-approved major modification or repair to an existing type certified aircraft, engine or propeller. Since it is adding to an existing type certificate, it is considered to be supplemental. Thus, before an older aircraft like the SAAB 340 can have its avionics upgraded to EGNOS capability, that particular upgrade must first receive STC.
Read this: EGNOS to get bigger footprint in Eastern Europe
NextJet was funded under the GSA’s Aviation Call 2015. The GSA Aviation Calls aim to foster EGNOS adoption in the European civil aviation sector. Grants are given to support projects that enable users to equip and use their aircraft fleet with GPS/SBAS-enabled avionics and to allow Air Navigation Service Providers (ANSP) and aerodromes/heliports to implement EGNOS-based operations in Europe.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Dne 7. 7. 2017 (pátek) bude budova Katastrálního pracoviště Chomutov uzavřena z technických důvodů.
Bentley’s SACS now includes an integrated analysis and design solution for the complete lifecycle of offshore structures including construction, transportation, in-place, and decommissioning. This new capability enables engineers to reduce heavy offshore structures into manageable pieces when removing them from complex working environments.
Phil Christensen, SVP, analytical modeling, at Bentley Systems, said, “When the price of oil dropped by more than 50 percent, engineering companies in the oil and gas industry had to rapidly adapt to sustain their businesses. This disruption has created a very challenging market in which technology plays a key role in adjusting to the changed circumstances.”
This latest advancement in SACS reinforces Bentley’s commitment to adapt its offerings to meet the changing requirements of the offshore energy industry. According to a recent report by IHS Markit, there has been a significant rise in the number of planned decommissioning projects, which is attributed to global economic conditions and assets in mature fields reaching their end of life. As decommissioning carries similar risks and challenges to marine construction, special consideration must be applied to the safety, environmental, economic, and social aspects of any project.
The SACS decommissioning capabilities automate the process and allow engineers to determine optimal cutting plans to meet decommissioning project requirements, such as structure weight for lift and transport. Users fully control the structural weight through change in elevation and can apply automatic cutting of the structure at user-defined elevations. The sum of forces for any elevation can be reviewed graphically or in tabular reports.
The new SACS release also includes improved intraoperability with AutoPIPE, an enhanced GUI for joint meshing, and other key advancements including:
With integrated workflows spanning AutoPIPE and SACS, piping design for offshore structures can be completed in hours instead of weeks. Workflows to add pipe loads to offshore structures improve efficiency and provide accurate analysis results. Importing piping geometry from AutoPIPE into SACS enables the design of secondary steel and piping connection supports on the primary offshore structure.
Users can perform combined stress, and pipe and stress analysis after they have imported piping connections and the structure from SACS into AutoPIPE. Moreover, importing support reaction results from AutoPIPE to SACS for structural analysis can save hundreds of hours of manual data entry. Lastly, completing the design and analysis with realistic models results in potential costs savings and improved risk mitigation.
Engineers designing FPSO topsides have indicated they can spend 40 percent of their time developing detailed finite element models of the complex joints in these structures. SACS Precede drawing options enable easy creation of plate surfaces from any orientation, improving efficiency for meshed joint generation. Additionally, the SACS methodology eliminates the requirement to model joints externally to determine SCFs or perform fatigue analysis or detailed strength analysis. A SACS finite element mesh, a model that captures complex connection behaviors, is fully integrated with SACS beam elements to enable simple and powerful workflows. Engineers can easily create meshes within seconds, for any complex joint, all within a single interface, and save hundreds of resource hours in manual calculations. The simplified process enables completion without requiring specialist finite element expertise.
About SACS
SACS is an integrated finite element structural analysis package of applications for the design of offshore structures. The automated workflows and graphical interactive redesign capabilities improve project efficiency. SACS includes the latest offshore structural design standards for offshore structure compliance. The unified analysis environment enables the efficient exploration of alternatives and optimization. By using Bentley’s scenario services cloud computing capability, users can drastically decrease the run time for analysis types requiring thousands of time history analysis for fatigue and strength design for offshore wind turbine platforms. SACS has a comprehensive interface to Bentley’s ProjectWise application allowing users to collaborate on projects from multiple locations.
View and Download Related Images:
Bentley’s SACS now includes an integrated analysis and design solution for the complete lifecycle of offshore structures including construction, transportation, in-place, and decommissioning. This new capability enables engineers to reduce heavy offshore structures into manageable pieces when removing them from complex working environments.
Phil Christensen, SVP, analytical modeling, at Bentley Systems, said, “When the price of oil dropped by more than 50 percent, engineering companies in the oil and gas industry had to rapidly adapt to sustain their businesses. This disruption has created a very challenging market in which technology plays a key role in adjusting to the changed circumstances.”
This latest advancement in SACS reinforces Bentley’s commitment to adapt its offerings to meet the changing requirements of the offshore energy industry. According to a recent report by IHS Markit, there has been a significant rise in the number of planned decommissioning projects, which is attributed to global economic conditions and assets in mature fields reaching their end of life. As decommissioning carries similar risks and challenges to marine construction, special consideration must be applied to the safety, environmental, economic, and social aspects of any project.
The SACS decommissioning capabilities automate the process and allow engineers to determine optimal cutting plans to meet decommissioning project requirements, such as structure weight for lift and transport. Users fully control the structural weight through change in elevation and can apply automatic cutting of the structure at user-defined elevations. The sum of forces for any elevation can be reviewed graphically or in tabular reports.
The new SACS release also includes improved intraoperability with AutoPIPE, an enhanced GUI for joint meshing, and other key advancements including:
With integrated workflows spanning AutoPIPE and SACS, piping design for offshore structures can be completed in hours instead of weeks. Workflows to add pipe loads to offshore structures improve efficiency and provide accurate analysis results. Importing piping geometry from AutoPIPE into SACS enables the design of secondary steel and piping connection supports on the primary offshore structure.
Users can perform combined stress, and pipe and stress analysis after they have imported piping connections and the structure from SACS into AutoPIPE. Moreover, importing support reaction results from AutoPIPE to SACS for structural analysis can save hundreds of hours of manual data entry. Lastly, completing the design and analysis with realistic models results in potential costs savings and improved risk mitigation.
Engineers designing FPSO topsides have indicated they can spend 40 percent of their time developing detailed finite element models of the complex joints in these structures. SACS Precede drawing options enable easy creation of plate surfaces from any orientation, improving efficiency for meshed joint generation. Additionally, the SACS methodology eliminates the requirement to model joints externally to determine SCFs or perform fatigue analysis or detailed strength analysis. A SACS finite element mesh, a model that captures complex connection behaviors, is fully integrated with SACS beam elements to enable simple and powerful workflows. Engineers can easily create meshes within seconds, for any complex joint, all within a single interface, and save hundreds of resource hours in manual calculations. The simplified process enables completion without requiring specialist finite element expertise.
About SACS
SACS is an integrated finite element structural analysis package of applications for the design of offshore structures. The automated workflows and graphical interactive redesign capabilities improve project efficiency. SACS includes the latest offshore structural design standards for offshore structure compliance. The unified analysis environment enables the efficient exploration of alternatives and optimization. By using Bentley’s scenario services cloud computing capability, users can drastically decrease the run time for analysis types requiring thousands of time history analysis for fatigue and strength design for offshore wind turbine platforms. SACS has a comprehensive interface to Bentley’s ProjectWise application allowing users to collaborate on projects from multiple locations.
View and Download Related Images:
Bentley’s SACS now includes an integrated analysis and design solution for the complete lifecycle of offshore structures including construction, transportation, in-place, and decommissioning. This new capability enables engineers to reduce heavy offshore structures into manageable pieces when removing them from complex working environments.
Phil Christensen, SVP, analytical modeling, at Bentley Systems, said, “When the price of oil dropped by more than 50 percent, engineering companies in the oil and gas industry had to rapidly adapt to sustain their businesses. This disruption has created a very challenging market in which technology plays a key role in adjusting to the changed circumstances.”
This latest advancement in SACS reinforces Bentley’s commitment to adapt its offerings to meet the changing requirements of the offshore energy industry. According to a recent report by IHS Markit, there has been a significant rise in the number of planned decommissioning projects, which is attributed to global economic conditions and assets in mature fields reaching their end of life. As decommissioning carries similar risks and challenges to marine construction, special consideration must be applied to the safety, environmental, economic, and social aspects of any project.
The SACS decommissioning capabilities automate the process and allow engineers to determine optimal cutting plans to meet decommissioning project requirements, such as structure weight for lift and transport. Users fully control the structural weight through change in elevation and can apply automatic cutting of the structure at user-defined elevations. The sum of forces for any elevation can be reviewed graphically or in tabular reports.
The new SACS release also includes improved intraoperability with AutoPIPE, an enhanced GUI for joint meshing, and other key advancements including:
With integrated workflows spanning AutoPIPE and SACS, piping design for offshore structures can be completed in hours instead of weeks. Workflows to add pipe loads to offshore structures improve efficiency and provide accurate analysis results. Importing piping geometry from AutoPIPE into SACS enables the design of secondary steel and piping connection supports on the primary offshore structure.
Users can perform combined stress, and pipe and stress analysis after they have imported piping connections and the structure from SACS into AutoPIPE. Moreover, importing support reaction results from AutoPIPE to SACS for structural analysis can save hundreds of hours of manual data entry. Lastly, completing the design and analysis with realistic models results in potential costs savings and improved risk mitigation.
Engineers designing FPSO topsides have indicated they can spend 40 percent of their time developing detailed finite element models of the complex joints in these structures. SACS Precede drawing options enable easy creation of plate surfaces from any orientation, improving efficiency for meshed joint generation. Additionally, the SACS methodology eliminates the requirement to model joints externally to determine SCFs or perform fatigue analysis or detailed strength analysis. A SACS finite element mesh, a model that captures complex connection behaviors, is fully integrated with SACS beam elements to enable simple and powerful workflows. Engineers can easily create meshes within seconds, for any complex joint, all within a single interface, and save hundreds of resource hours in manual calculations. The simplified process enables completion without requiring specialist finite element expertise.
About SACS
SACS is an integrated finite element structural analysis package of applications for the design of offshore structures. The automated workflows and graphical interactive redesign capabilities improve project efficiency. SACS includes the latest offshore structural design standards for offshore structure compliance. The unified analysis environment enables the efficient exploration of alternatives and optimization. By using Bentley’s scenario services cloud computing capability, users can drastically decrease the run time for analysis types requiring thousands of time history analysis for fatigue and strength design for offshore wind turbine platforms. SACS has a comprehensive interface to Bentley’s ProjectWise application allowing users to collaborate on projects from multiple locations.
View and Download Related Images:
Bentley’s SACS now includes an integrated analysis and design solution for the complete lifecycle of offshore structures including construction, transportation, in-place, and decommissioning. This new capability enables engineers to reduce heavy offshore structures into manageable pieces when removing them from complex working environments.
Phil Christensen, SVP, analytical modeling, at Bentley Systems, said, “When the price of oil dropped by more than 50 percent, engineering companies in the oil and gas industry had to rapidly adapt to sustain their businesses. This disruption has created a very challenging market in which technology plays a key role in adjusting to the changed circumstances.”
This latest advancement in SACS reinforces Bentley’s commitment to adapt its offerings to meet the changing requirements of the offshore energy industry. According to a recent report by IHS Markit, there has been a significant rise in the number of planned decommissioning projects, which is attributed to global economic conditions and assets in mature fields reaching their end of life. As decommissioning carries similar risks and challenges to marine construction, special consideration must be applied to the safety, environmental, economic, and social aspects of any project.
The SACS decommissioning capabilities automate the process and allow engineers to determine optimal cutting plans to meet decommissioning project requirements, such as structure weight for lift and transport. Users fully control the structural weight through change in elevation and can apply automatic cutting of the structure at user-defined elevations. The sum of forces for any elevation can be reviewed graphically or in tabular reports.
The new SACS release also includes improved intraoperability with AutoPIPE, an enhanced GUI for joint meshing, and other key advancements including:
With integrated workflows spanning AutoPIPE and SACS, piping design for offshore structures can be completed in hours instead of weeks. Workflows to add pipe loads to offshore structures improve efficiency and provide accurate analysis results. Importing piping geometry from AutoPIPE into SACS enables the design of secondary steel and piping connection supports on the primary offshore structure.
Users can perform combined stress, and pipe and stress analysis after they have imported piping connections and the structure from SACS into AutoPIPE. Moreover, importing support reaction results from AutoPIPE to SACS for structural analysis can save hundreds of hours of manual data entry. Lastly, completing the design and analysis with realistic models results in potential costs savings and improved risk mitigation.
Engineers designing FPSO topsides have indicated they can spend 40 percent of their time developing detailed finite element models of the complex joints in these structures. SACS Precede drawing options enable easy creation of plate surfaces from any orientation, improving efficiency for meshed joint generation. Additionally, the SACS methodology eliminates the requirement to model joints externally to determine SCFs or perform fatigue analysis or detailed strength analysis. A SACS finite element mesh, a model that captures complex connection behaviors, is fully integrated with SACS beam elements to enable simple and powerful workflows. Engineers can easily create meshes within seconds, for any complex joint, all within a single interface, and save hundreds of resource hours in manual calculations. The simplified process enables completion without requiring specialist finite element expertise.
About SACS
SACS is an integrated finite element structural analysis package of applications for the design of offshore structures. The automated workflows and graphical interactive redesign capabilities improve project efficiency. SACS includes the latest offshore structural design standards for offshore structure compliance. The unified analysis environment enables the efficient exploration of alternatives and optimization. By using Bentley’s scenario services cloud computing capability, users can drastically decrease the run time for analysis types requiring thousands of time history analysis for fatigue and strength design for offshore wind turbine platforms. SACS has a comprehensive interface to Bentley’s ProjectWise application allowing users to collaborate on projects from multiple locations.
View and Download Related Images:
Bentley’s SACS now includes an integrated analysis and design solution for the complete lifecycle of offshore structures including construction, transportation, in-place, and decommissioning. This new capability enables engineers to reduce heavy offshore structures into manageable pieces when removing them from complex working environments.
Phil Christensen, SVP, analytical modeling, at Bentley Systems, said, “When the price of oil dropped by more than 50 percent, engineering companies in the oil and gas industry had to rapidly adapt to sustain their businesses. This disruption has created a very challenging market in which technology plays a key role in adjusting to the changed circumstances.”
This latest advancement in SACS reinforces Bentley’s commitment to adapt its offerings to meet the changing requirements of the offshore energy industry. According to a recent report by IHS Markit, there has been a significant rise in the number of planned decommissioning projects, which is attributed to global economic conditions and assets in mature fields reaching their end of life. As decommissioning carries similar risks and challenges to marine construction, special consideration must be applied to the safety, environmental, economic, and social aspects of any project.
The SACS decommissioning capabilities automate the process and allow engineers to determine optimal cutting plans to meet decommissioning project requirements, such as structure weight for lift and transport. Users fully control the structural weight through change in elevation and can apply automatic cutting of the structure at user-defined elevations. The sum of forces for any elevation can be reviewed graphically or in tabular reports.
The new SACS release also includes improved intraoperability with AutoPIPE, an enhanced GUI for joint meshing, and other key advancements including:
With integrated workflows spanning AutoPIPE and SACS, piping design for offshore structures can be completed in hours instead of weeks. Workflows to add pipe loads to offshore structures improve efficiency and provide accurate analysis results. Importing piping geometry from AutoPIPE into SACS enables the design of secondary steel and piping connection supports on the primary offshore structure.
Users can perform combined stress, and pipe and stress analysis after they have imported piping connections and the structure from SACS into AutoPIPE. Moreover, importing support reaction results from AutoPIPE to SACS for structural analysis can save hundreds of hours of manual data entry. Lastly, completing the design and analysis with realistic models results in potential costs savings and improved risk mitigation.
Engineers designing FPSO topsides have indicated they can spend 40 percent of their time developing detailed finite element models of the complex joints in these structures. SACS Precede drawing options enable easy creation of plate surfaces from any orientation, improving efficiency for meshed joint generation. Additionally, the SACS methodology eliminates the requirement to model joints externally to determine SCFs or perform fatigue analysis or detailed strength analysis. A SACS finite element mesh, a model that captures complex connection behaviors, is fully integrated with SACS beam elements to enable simple and powerful workflows. Engineers can easily create meshes within seconds, for any complex joint, all within a single interface, and save hundreds of resource hours in manual calculations. The simplified process enables completion without requiring specialist finite element expertise.
About SACS
SACS is an integrated finite element structural analysis package of applications for the design of offshore structures. The automated workflows and graphical interactive redesign capabilities improve project efficiency. SACS includes the latest offshore structural design standards for offshore structure compliance. The unified analysis environment enables the efficient exploration of alternatives and optimization. By using Bentley’s scenario services cloud computing capability, users can drastically decrease the run time for analysis types requiring thousands of time history analysis for fatigue and strength design for offshore wind turbine platforms. SACS has a comprehensive interface to Bentley’s ProjectWise application allowing users to collaborate on projects from multiple locations.
View and Download Related Images: (Parvinder creating final versions)
Evropská satelitní navigační síť Galileo umí mnohem více, než jen nám ukázat cestu: pomáhá také zachraňovat životy. Jde o službu SaR (Search and Rescue), která dovoluje přesně zaměřit na volání v nouzi, ať již na zemi nebo na moři.
Ať už jste vlastníkem nebo uživatelem pozemku, potřebujete vědět, kde daný pozemek leží. Zní to jako samozřejmost, ale ne vždy je jednoduché takovou skutečnost zjistit. Které informace dokážu získat z veřejných zdrojů a které už ne? A jaké výhody má zobrazení daných pozemků v aplikaci Clever Assets?
V minulém článku jsme psali o veřejných zdrojích, odkud mohu zjistit, co vlastním. Nejčastěji využívaným nástrojem je Nahlížení do katastru nemovitostí (dále jen “Nahlížení do KN”) a proto si teď ukážeme výstupy, které je možné z tohoto zdroje získat.
V Nahlížení do KN musím zadat název katastrálního území a parcelní číslo. Pokud je parcela vedena v digitální podobě, zobrazí se přímo náhled konkrétní parcely v mapě, viz obrázek 1, modře vyznačená parcela.

Obr. 1: Parcela katastru nemovitostí v digitální podobě
Pokud pozemek není digitalizován, je zanesen pouze v papírové mapě, a my si proto v Nahlížení do KN můžeme zobrazit jen rastr těchto původních papírových map. Jsou dvě možnosti, kde je takový pozemek evidován: buď v katastru nemovitostí (dále jen “KN”), nebo ve zjednodušené evidenci (dále jen “ZE”).
Pokud se jedná o parcelu nedigitalizované mapy KN, mapová on-line aplikace dokáže pouze zacílit v rastru katastrální mapy na tzv. definiční bod parcely, ale parcelu nám aplikace nijak nezvýrazní. Rastr katastrální mapy je možné si promítnout nad leteckým snímkem, abychom viděli, kde parcela leží v terénu.

Obr. 2: Nedigitalizovaná parcela v KN spolu s leteckým snímkem
Jestliže je ale mapa vedená ve ZE, parcela nemá definiční bod, podle kterého by bylo možné ji zacílit v mapě. Bude proto zobrazeno celé katastrální území, viz obr. 3.

Obr. 3: Mapa celého katastrálního území
Pokud vím, případně tuším, kde parcela v terénu leží, dokážu ji najít. Když to nevím, musím hledat parcelní číslo v celém katastrálním území. To je však časově náročné a nepohodlné.

Obr. 4: Pozemky ve ZE
U parcel ZE jsou k dispozici pouze základní údaje o parcele: parcelní číslo, číslo listu vlastnictví a výměra. Chybí např. způsob využití a druh pozemku.
Zobrazení pozemků v aplikaci Clever Assets
Aplikace Clever Assets umí zobrazit vlastněné pozemky, a to včetně parcel zjednodušené evidence, např. s leteckým snímkem nebo s půdními bloky LPIS. V aplikaci jednoduše vidíte, kdo hospodaří na vašem pozemku, resp. měl by vám platit pachtovné.

Obr. 5: Zobrazení parcel ZE společně s půdními bloky LPIS v aplikaci Clever Assets
V Clever Assets je možné najednou v jednom mapovém okně zobrazit více vlastněných parcel ve více katastrálních územích, viz obr. 6, což Nahlížení do KN neumožňuje.

Obr. 6: Zobrazení vlastněných parcel v aplikaci Clever Assets (žlutě jsou vyznačeny vlastněné pozemky, růžově hranice katastrálního území)
Navíc je možné ke každé parcele evidovat pachtovní smlouvu a vést kompletní agendu správy pozemků. Aplikace dokáže zobrazit všechny vlastněné i propachtované pozemky, a ty dále rozlišit podle různých kritérií. To vše je možné zobrazit např. společně s půdními bloky LPIS, viz obr. 7.

Obr. 7: Parcely dle právního vztahu v aplikaci Clever Assets
Věříme, že jsme vám objasnili vyhledání parcel v Nahlížení do KN a také možnosti zobrazení parcel v naší aplikaci Clever Assets.
Tým Clever Assets
Ať už jste vlastníkem nebo uživatelem pozemku, potřebujete vědět, kde daný pozemek leží. Zní to jako samozřejmost, ale ne vždy je jednoduché takovou skutečnost zjistit. Které informace dokážu získat z veřejných zdrojů a které už ne? A jaké výhody má zobrazení daných pozemků v aplikaci Clever Assets?
V minulém článku jsme psali o veřejných zdrojích, odkud mohu zjistit, co vlastním. Nejčastěji využívaným nástrojem je Nahlížení do katastru nemovitostí (dále jen “Nahlížení do KN”) a proto si teď ukážeme výstupy, které je možné z tohoto zdroje získat.
V Nahlížení do KN musím zadat název katastrálního území a parcelní číslo. Pokud je parcela vedena v digitální podobě, zobrazí se přímo náhled konkrétní parcely v mapě, viz obrázek 1, modře vyznačená parcela.

Obr. 1: Parcela katastru nemovitostí v digitální podobě
Pokud pozemek není digitalizován, je zanesen pouze v papírové mapě, a my si proto v Nahlížení do KN můžeme zobrazit jen rastr těchto původních papírových map. Jsou dvě možnosti, kde je takový pozemek evidován: buď v katastru nemovitostí (dále jen “KN”), nebo ve zjednodušené evidenci (dále jen “ZE”).
Pokud se jedná o parcelu nedigitalizované mapy KN, mapová on-line aplikace dokáže pouze zacílit v rastru katastrální mapy na tzv. definiční bod parcely, ale parcelu nám aplikace nijak nezvýrazní. Rastr katastrální mapy je možné si promítnout nad leteckým snímkem, abychom viděli, kde parcela leží v terénu.

Obr. 2: Nedigitalizovaná parcela v KN spolu s leteckým snímkem
Jestliže je ale mapa vedená ve ZE, parcela nemá definiční bod, podle kterého by bylo možné ji zacílit v mapě. Bude proto zobrazeno celé katastrální území, viz obr. 3.

Obr. 3: Mapa celého katastrálního území
Pokud vím, případně tuším, kde parcela v terénu leží, dokážu ji najít. Když to nevím, musím hledat parcelní číslo v celém katastrálním území. To je však časově náročné a nepohodlné.

Obr. 4: Pozemky ve ZE
U parcel ZE jsou k dispozici pouze základní údaje o parcele: parcelní číslo, číslo listu vlastnictví a výměra. Chybí např. způsob využití a druh pozemku.
Zobrazení pozemků v aplikaci Clever Assets
Aplikace Clever Assets umí zobrazit vlastněné pozemky, a to včetně parcel zjednodušené evidence, např. s leteckým snímkem nebo s půdními bloky LPIS. V aplikaci jednoduše vidíte, kdo hospodaří na vašem pozemku, resp. měl by vám platit pachtovné.

Obr. 5: Zobrazení parcel ZE společně s půdními bloky LPIS v aplikaci Clever Assets
V Clever Assets je možné najednou v jednom mapovém okně zobrazit více vlastněných parcel ve více katastrálních územích, viz obr. 6, což Nahlížení do KN neumožňuje.

Obr. 6: Zobrazení vlastněných parcel v aplikaci Clever Assets (žlutě jsou vyznačeny vlastněné pozemky, růžově hranice katastrálního území)
Navíc je možné ke každé parcele evidovat pachtovní smlouvu a vést kompletní agendu správy pozemků. Aplikace dokáže zobrazit všechny vlastněné i propachtované pozemky, a ty dále rozlišit podle různých kritérií. To vše je možné zobrazit např. společně s půdními bloky LPIS, viz obr. 7.

Obr. 7: Parcely dle právního vztahu v aplikaci Clever Assets
Věříme, že jsme vám objasnili vyhledání parcel v Nahlížení do KN a také možnosti zobrazení parcel v naší aplikaci Clever Assets.
Tým Clever Assets
Ať už jste vlastníkem nebo uživatelem pozemku, potřebujete vědět, kde daný pozemek leží. Zní to jako samozřejmost, ale ne vždy je jednoduché takovou skutečnost zjistit. Které informace dokážu získat z veřejných zdrojů a které už ne? A jaké výhody má zobrazení daných pozemků v aplikaci Clever Assets?
V minulém článku jsme psali o veřejných zdrojích, odkud mohu zjistit, co vlastním. Nejčastěji využívaným nástrojem je Nahlížení do katastru nemovitostí (dále jen “Nahlížení do KN”) a proto si teď ukážeme výstupy, které je možné z tohoto zdroje získat.
V Nahlížení do KN musím zadat název katastrálního území a parcelní číslo. Pokud je parcela vedena v digitální podobě, zobrazí se přímo náhled konkrétní parcely v mapě, viz obrázek 1, modře vyznačená parcela.

Obr. 1: Parcela katastru nemovitostí v digitální podobě
Pokud pozemek není digitalizován, je zanesen pouze v papírové mapě, a my si proto v Nahlížení do KN můžeme zobrazit jen rastr těchto původních papírových map. Jsou dvě možnosti, kde je takový pozemek evidován: buď v katastru nemovitostí (dále jen “KN”), nebo ve zjednodušené evidenci (dále jen “ZE”).
Pokud se jedná o parcelu nedigitalizované mapy KN, mapová on-line aplikace dokáže pouze zacílit v rastru katastrální mapy na tzv. definiční bod parcely, ale parcelu nám aplikace nijak nezvýrazní. Rastr katastrální mapy je možné si promítnout nad leteckým snímkem, abychom viděli, kde parcela leží v terénu.

Obr. 2: Nedigitalizovaná parcela v KN spolu s leteckým snímkem
Jestliže je ale mapa vedená ve ZE, parcela nemá definiční bod, podle kterého by bylo možné ji zacílit v mapě. Bude proto zobrazeno celé katastrální území, viz obr. 3.

Obr. 3: Mapa celého katastrálního území
Pokud vím, případně tuším, kde parcela v terénu leží, dokážu ji najít. Když to nevím, musím hledat parcelní číslo v celém katastrálním území. To je však časově náročné a nepohodlné.

Obr. 4: Pozemky ve ZE
U parcel ZE jsou k dispozici pouze základní údaje o parcele: parcelní číslo, číslo listu vlastnictví a výměra. Chybí např. způsob využití a druh pozemku.
Zobrazení pozemků v aplikaci Clever Assets
Aplikace Clever Assets umí zobrazit vlastněné pozemky, a to včetně parcel zjednodušené evidence, např. s leteckým snímkem nebo s půdními bloky LPIS. V aplikaci jednoduše vidíte, kdo hospodaří na vašem pozemku, resp. měl by vám platit pachtovné.

Obr. 5: Zobrazení parcel ZE společně s půdními bloky LPIS v aplikaci Clever Assets
V Clever Assets je možné najednou v jednom mapovém okně zobrazit více vlastněných parcel ve více katastrálních územích, viz obr. 6, což Nahlížení do KN neumožňuje.

Obr. 6: Zobrazení vlastněných parcel v aplikaci Clever Assets (žlutě jsou vyznačeny vlastněné pozemky, růžově hranice katastrálního území)
Navíc je možné ke každé parcele evidovat pachtovní smlouvu a vést kompletní agendu správy pozemků. Aplikace dokáže zobrazit všechny vlastněné i propachtované pozemky, a ty dále rozlišit podle různých kritérií. To vše je možné zobrazit např. společně s půdními bloky LPIS, viz obr. 7.

Obr. 7: Parcely dle právního vztahu v aplikaci Clever Assets
Věříme, že jsme vám objasnili vyhledání parcel v Nahlížení do KN a také možnosti zobrazení parcel v naší aplikaci Clever Assets.
Tým Clever Assets