
As Galileo moves closer to full services, an international group of young professionals gathered to discuss how space has entered the mainstream in our daily culture.
For the second year in a row, leaders from the European GNSS Agency (GSA) were part of discussions and learning at the Space Generation Fusion Forum (Fusion Forum), this year held on April 14-15 in Colorado Springs, U.S.A. The two-day development and networking event for approximately 60 students and young space professionals is held annually in conjunction with the International Space Symposium.
Sixty years after the launch of Sputnik, the gathering of individuals 35 years old and younger met to explore the core theme “Space in the Mainstream.” Through discussion tracks, expert panels, keynote presentations and interactive activities, the attendees discussed how space-related innovations, such as global navigation satellite systems (GNSS) have become mainstream to our culture and common in our everyday and professional lives.

GSA's Rodrigo da Costa moderates a group discussion at the Space Generation Fusion Forum
Rodrigo da Costa, Galileo Services Programme Manager at the GSA, moderated the “Innovative Influences of Space on Earth” discussion track. As a backdrop to the conversation, da Costa noted that the European global navigation constellation, Galileo, is already providing service to millions of people, with more satellites launching into service this year.
“Four more Galileo satellites were launched in December 2017 and will enter service in 2018,” noted da Costa. “These satellites will join the 18 others already in space, and four more are scheduled for launch in July. The result is a next generation of location technology that will deliver maximum performance, flexibility and reliability to further evolve services into our daily lives.”
Carlo des Dorides, Executive Director of the GSA, provided the closing remarks at Fusion Forum. Through a presentation entitled “The dream becomes a reality,” des Dorides provided perspectives of the transition of space from myth to ‘mainstream.’
“A primary mainstream case is GNSS,” said des Dorides. “There were 25 navigation satellites 20 years ago, today there are more than 80. GNSS is an invisible revolution that has helped to turn the science fiction of the 1960s into a truly pervasive reality. Today, everyone has a space receiver in their pocket. Satellites in the mainstream help us move, play and work – from traffic management apps to guiding tourists and precision farming.”
Citing what to expect on the horizon, des Dorides outlined how satellite technology will advance to enable ubiquitous positioning capabilities, autonomous vehicles and farming, along with passive to active augmented reality.
“All of this innovation is becoming mainstream as Galileo grows closer to full services,” concluded da Costa. “GSA is Europe’s ‘mainstream space catalyst’. We are changing the technology paradigm and focussing on evolving user requirements as we approach the threshold of living on a planet where every person has a GNSS device.”
GSA Scholarship winner outlines how satellite technology can help fulfil the UN’s Sustainable Development GoalsAs part of its participation in the 2018 Fusion Forum, the European GNSS Agency (GSA), in cooperation with the Space Generation Advisory Council (SGAC), sponsored the Young GSA – Space Systems Synergy Scholarship, which funded attendance to the event for one delegate. Participants were asked to share their views on how the integrated use of space infrastructure – global satellite communications, satellite navigation (including Europe’s Galileo and EGNOS), and Earth observation/monitoring (including Europe’s Copernicus) – also known as the ‘system of three,’ can create a safer and more sustainable world. The winning submission came from Sissi Enestam, an aspiring space professional who is completing her doctorate in Space Science and Technology at Aalto University, in Espoo Finland. Enestam outlined how the “system of three” could aid in multiple ways to help society fulfil all 17 of the United Nations’ (UN) sustainable development goals. Rodrigo da Costa presents the award to Sissi Enestam, the recipient of the 2018 Young GSA – Space Systems Synergy “As number 2 on the list, the UN lists a goal of zero hunger,” described Enestam. “Here, navigation and Earth observation could be used to help determine the most suitable land near the farmer’s location, leading to more precise and productive farming.” Enestam further posed how satellite technology delivers meteorological data to prompt timely harvesting to avoid food waste – one of the developed world’s larger challenges in food production today. And for the UN goal of Good Health and Wellbeing & Life on Land, she suggested that the ‘system of three’ can aid in preserving life by providing real-time data during natural disasters, while also monitoring the long-term effects of climate change. “My essay gives just a few examples, but I believe the possibilities are endless,” concluded Enestam “For the UN goal 16, which calls for peace, justice and strong institutions, I think this is what space is really all about,” she concluded. “The world is beginning to realize that in order to solve issues on Earth, we need to utilise space. And this is a task where cooperation is vital.” |
A recently study from the European GNSS Agency (GSA) and the United Nations Office for Outer Space Affairs (UNOOSA): “EGNSS and COPERNICUS: Supporting the Sustainable Development Goals. Building blocks towards the 2030 Agenda” investigates how EU space technologies support the fulfilment of the UN SDGs. You can read the study here.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Druhá ze dvou družic Sentinel-3 je plně připravena ke startu z Ruska. K tomu dojde ve středu 25. dubna v 17:57 h GMT (19:57 h středoevropského času). Start je možné sledovat v živém přenosu.
Druhá ze dvou družic Sentinel-3 je plně připravena ke startu z Ruska. K tomu dojde ve středu 25. dubna v 17:57 h GMT (19:57 h středoevropského času). Start je možné sledovat v živém přenosu.

V rámci Plánu zahraniční rozvojové spolupráce na rok 2018, schváleného Vládou ČR dne 21. června 2017, vyhlašuje česká rozvojová agentura (ČRA) výběrové řízení na služby pro nadlimitní veřejnou zakázku „Podpora implementace regionální strategie s využitím GIS dat”. Předmětem veřejné zakázky jsou služby a dodávky (služby jsou přitom převládající), které přispějí k vytvoření plnohodnotného efektivního a závazného rámce […]
The post Veřejná zakázka: „Podpora implementace regionální strategie s využitím GIS dat“ appeared first on GISportal.cz.
Príspevok Koho stretnete na 11. ročníku Fóra mladých geoinformatikov vo Zvolene? Copy zobrazený najskôr GeoCommunity.sk.
Press Coverage
Water Online, USA
Read the articlePress Coverage
Informed Infrastructure, USA
Read the articlePress Coverage
Water Online, USA
Read the articlePríspevok Zoznam príspevkov 11. ročníka Fóra mladých geoinformatikov vo Zvolene zobrazený najskôr GeoCommunity.sk.
Príspevok Zoznam príspevkov 11. ročníka Fóra mladých geoinformatikov vo Zvolene zobrazený najskôr GeoCommunity.sk.
V piatok 25. mája 2018 sa na Technickej univerzite vo Zvolene uskutoční 11. ročník vedeckej konferencie Fórum mladých geoinformatikov s medzinárodnou účasťou. Predbežne je prihlásených desať odborných prednášok a jeden poster od študentov doktorandského štúdia a mladých vedecko-výskumných pracovníkov so zameraním na geoinformatiku. Fórum mladých geoinformatikov 2018 organizujú doktorandi a mladí vedecko-výskumní pracovníci z Katedry hospodárskej … … Čítať ďalej
Príspevok Zoznam príspevkov 11. ročníka Fóra mladých geoinformatikov vo Zvolene zobrazený najskôr GeoCommunity.sk.
Príspevok Zoznam príspevkov 11. ročníka Fóra mladých geoinformatikov vo Zvolene zobrazený najskôr GeoCommunity.sk.
Príspevok Zoznam príspevkov na 11. ročník Fóra mladých geoinformatikov vo Zvolene zobrazený najskôr GeoCommunity.sk.
Press Coverage
Water Online, USA
Read the article

Tomorrow’s launch of Sentinel-3B will complete the Sentinel-3 constellation and represents the culmination of months of training to fly Europe’s latest Copernicus satellite.


Participants in the Challenges in Arctic Navigation workshop in Olos, Muonio, Finland on April 16-18 discussed how GNSS can address some of the difficulties posed by navigation in the Arctic, in addition to how satellite navigation itself can be improved in the region, which is also a challenging environment for GNSS.
The Challenges in Arctic Navigation workshop was held under the Finnish Chairmanship of the Arctic Council. The workshop was organised by the Ministry and Communications (Mrs Seija Miettinen-Bellevergue) and the Finnish Geospatial Research Institute (Prof. Heidi Kuusniemi) and funded by the Ministry of Foreign Affairs.
A number of challenges to both conventional and satellite navigation were highlighted during the conference. These range from severe climatic and ice conditions, to the long distances involved in navigating in the region, all of which result in longer emergency response times for search and rescue. The challenge of sparse telecommunications coverage in the Arctic was also highlighted.
Low EGNOS coverage due to the poor visibility of geostationary (GEO) satellites received a lot of attention. This was highlighted as a significant obstacle to the expansion of SBAS-based navigation in Arctic aviation. Specifically, poor EGNOS LPV 200 coverage in the North and the Arctic means that it is not possible to use this service for landing aircraft. New satellite constellations in low-Earth or highly elliptic orbits were seen as a promising solution. Some participants also noted specific challenges with the reception of GNSS signals at Auroral latitudes.

In addition to GNSS and telecommunications, navigation in the Arctic also benefits from other space-based technologies, especially in the maritime domain. "Sea currents are chaotic and not well predictable if satellite images are not available," Veli Luukkala, Chief Officer at Arctia Icebreaking Ltd., said.
While acknowledging these challenges in his address at the conference, Gian Gherardo Calini, the GSA’s Head of Market Development, also stressed some of the opportunities offered by EGNSS for different applications. The ones coming from implementation of EGNOS based procedures in aviation are: improved accessibility and operational capability, reduced environmental impacts and costs, infrastructure rationalisation, and increased safety. With regard to the low level of EGNOS coverage, he said that extension of the commitment areas for APV-I, NPA and LPV-200 up to 72ºN in Norway and Finland is planned for 2018 according to the EGNOS SoL Implementation Roadmap.
Watch this: EGNOS is growing
Regarding the issue of emergency response times, Calini said that, with the increased positioning accuracy provided by Galileo integrated into COSPAS-SARSAT, users would benefit from reduced detection times, improved localisation, increased availability and the return link function. “If a person in distress knows that their message has been heard and that help is on the way, this is very important. This is a key differentiator of Galileo,” he said.
In his address at the workshop, Eric Guyader, Galileo Programme Administrator at the European Commission, said that since 2013, the European Commission has been developing modernisation plans for Galileo, to ensure that the system can respond to new challenges in the use of GNSS. He said that the EC’s approach is to capture the strategic priorities of the Member States, including in the Arctic, and to understand the changing GNSS environment.
Regarding the specific challenges posed by the Arctic region, he said that the Commission is in open dialogue with countries in the region to establish priorities. He said that Galileo provides good service overall in both navigation and SAR, and that, in combination with GPS and GLONASS, it would offer excellent service.
Guyader said that the Galileo modernisation includes plans for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), and emergency warning service and an ionosphere prediction service, which will make it possible to quickly react to sudden signal degradation.
In another presentation, a representative from academia noted that ionospheric scintillation, or the rapid modification of radio waves by small-scale structures in the ionosphere, was an important concern in the Arctic, primarily for service availability and continuity, rather than integrity. He said that dual-frequency GNSS offered a possible solution, as it would allow users to directly and robustly estimate ionospheric delay.
A potential solution to the problem of poor visibility of GEO satellites was offered by Kjersti Moldekelev, Senior Adviser at the Norwegian Space Centre. Moldeklev said that the company Space Norway was planning to launch HEO satellites in 2022, which would provide broadband access to the Arctic region. She said that if these HEO satellites were to carry SBAS payload, this would give the EU a foothold in the Arctic. "This will definitely be a solution for communications challenges in the region and perhaps for navigation challenges also,” she said.
Local stakeholders in Arctic navigation were well represented at the workshop, including the Finnish Defence Forces, the Finnish Communications Regulatory Authority, and companies such as Finnair, KNL Networks, and Reaktor. The stakeholders actively contributed to the workshop by giving keynote addresses, participating in panel discussions, and working in expert groups to build a roadmap towards resolving the challenges of Arctic navigation.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Participants in the Challenges in Arctic Navigation workshop in Olos, Muonio, Finland on April 16-18 discussed how GNSS can address some of the difficulties posed by navigation in the Arctic, in addition to how satellite navigation itself can be improved in the region, which is also a challenging environment for GNSS.
The Challenges in Arctic Navigation workshop was held under the Finnish Chairmanship of the Arctic Council. The workshop was organised by the Ministry and Communications (Mrs Seija Miettinen-Bellevergue) and the Finnish Geospatial Research Institute (Prof. Heidi Kuusniemi) and funded by the Ministry of Foreign Affairs.
A number of challenges to both conventional and satellite navigation were highlighted during the conference. These range from severe climatic and ice conditions, to the long distances involved in navigating in the region, all of which result in longer emergency response times for search and rescue. The challenge of sparse telecommunications coverage in the Arctic was also highlighted.
Low EGNOS coverage due to the poor visibility of geostationary (GEO) satellites received a lot of attention. This was highlighted as a significant obstacle to the expansion of SBAS-based navigation in Arctic aviation. Specifically, poor EGNOS LPV 200 coverage in the North and the Arctic means that it is not possible to use this service for landing aircraft. New satellite constellations in low-Earth or highly elliptic orbits were seen as a promising solution. Some participants also noted specific challenges with the reception of GNSS signals at Auroral latitudes.

In addition to GNSS and telecommunications, navigation in the Arctic also benefits from other space-based technologies, especially in the maritime domain. "Sea currents are chaotic and not well predictable if satellite images are not available," Veli Luukkala, Chief Officer at Arctia Icebreaking Ltd., said.
While acknowledging these challenges in his address at the conference, Gian Gherardo Calini, the GSA’s Head of Market Development, also stressed some of the opportunities offered by EGNSS for different applications. The ones coming from implementation of EGNOS based procedures in aviation are: improved accessibility and operational capability, reduced environmental impacts and costs, infrastructure rationalisation, and increased safety. With regard to the low level of EGNOS coverage, he said that extension of the commitment areas for APV-I, NPA and LPV-200 up to 72ºN in Norway and Finland is planned for 2018 according to the EGNOS SoL Implementation Roadmap.
Watch this: EGNOS is growing
Regarding the issue of emergency response times, Calini said that, with the increased positioning accuracy provided by Galileo integrated into COSPAS-SARSAT, users would benefit from reduced detection times, improved localisation, increased availability and the return link function. “If a person in distress knows that their message has been heard and that help is on the way, this is very important. This is a key differentiator of Galileo,” he said.
In his address at the workshop, Eric Guyader, Galileo Programme Administrator at the European Commission, said that since 2013, the European Commission has been developing modernisation plans for Galileo, to ensure that the system can respond to new challenges in the use of GNSS. He said that the EC’s approach is to capture the strategic priorities of the Member States, including in the Arctic, and to understand the changing GNSS environment.
Regarding the specific challenges posed by the Arctic region, he said that the Commission is in open dialogue with countries in the region to establish priorities. He said that Galileo provides good service overall in both navigation and SAR, and that, in combination with GPS and GLONASS, it would offer excellent service.
Guyader said that the Galileo modernisation includes plans for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), and emergency warning service and an ionosphere prediction service, which will make it possible to quickly react to sudden signal degradation.
In another presentation, a representative from academia noted that ionospheric scintillation, or the rapid modification of radio waves by small-scale structures in the ionosphere, was an important concern in the Arctic, primarily for service availability and continuity, rather than integrity. He said that dual-frequency GNSS offered a possible solution, as it would allow users to directly and robustly estimate ionospheric delay.
A potential solution to the problem of poor visibility of GEO satellites was offered by Kjersti Moldekelev, Senior Adviser at the Norwegian Space Centre. Moldeklev said that the company Space Norway was planning to launch HEO satellites in 2022, which would provide broadband access to the Arctic region. She said that if these HEO satellites were to carry SBAS payload, this would give the EU a foothold in the Arctic. "This will definitely be a solution for communications challenges in the region and perhaps for navigation challenges also,” she said.
Local stakeholders in Arctic navigation were well represented at the workshop, including the Finnish Defence Forces, the Finnish Communications Regulatory Authority, and companies such as Finnair, KNL Networks, and Reaktor. The stakeholders actively contributed to the workshop by giving keynote addresses, participating in panel discussions, and working in expert groups to build a roadmap towards resolving the challenges of Arctic navigation.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Participants in the Challenges in Arctic Navigation workshop in Olos, Muonio, Finland on April 16-18 discussed how GNSS can address some of the difficulties posed by navigation in the Arctic, in addition to how satellite navigation itself can be improved in the region, which is also a challenging environment for GNSS.
The Challenges in Arctic Navigation workshop was held under the Finnish Chairmanship of the Arctic Council. The workshop was organised by the Ministry and Communications (Mrs Seija Miettinen-Bellevergue) and the Finnish Geospatial Research Institute (Prof. Heidi Kuusniemi) and funded by the Ministry of Foreign Affairs.
A number of challenges to both conventional and satellite navigation were highlighted during the conference. These range from severe climatic and ice conditions, to the long distances involved in navigating in the region, all of which result in longer emergency response times for search and rescue. The challenge of sparse telecommunications coverage in the Arctic was also highlighted.
Low EGNOS coverage due to the poor visibility of geostationary (GEO) satellites received a lot of attention. This was highlighted as a significant obstacle to the expansion of SBAS-based navigation in Arctic aviation. Specifically, poor EGNOS LPV 200 coverage in the North and the Arctic means that it is not possible to use this service for landing aircraft. New satellite constellations in low-Earth or highly elliptic orbits were seen as a promising solution. Some participants also noted specific challenges with the reception of GNSS signals at Auroral latitudes.
In addition to GNSS and telecommunications, navigation in the Arctic also benefits from other space-based technologies, especially in the maritime domain. "Sea currents are chaotic and not well predictable if satellite images are not available," Veli Luukkala, Chief Officer at Arctia Icebreaking Ltd., said.
While acknowledging these challenges in his address at the conference, Gian Gherardo Calini, the GSA’s Head of Market Development, also stressed some of the opportunities offered by EGNSS for different applications. The ones coming from implementation of EGNOS based procedures in aviation are: improved accessibility and operational capability, reduced environmental impacts and costs, infrastructure rationalisation, and increased safety. With regard to the low level of EGNOS coverage, he said that extension of the commitment areas for APV-I, NPA and LPV-200 up to 72ºN in Norway and Finland is planned for 2018 according to the EGNOS SoL Implementation Roadmap.
Watch this: EGNOS is growing
Regarding the issue of emergency response times, Calini said that, with the increased positioning accuracy provided by Galileo integrated into COSPAS-SARSAT, users would benefit from reduced detection times, improved localisation, increased availability and the return link function. “If a person in distress knows that their message has been heard and that help is on the way, this is very important. This is a key differentiator of Galileo,” he said.
In his address at the workshop, Eric Guyader, Galileo Programme Administrator at the European Commission, said that since 2013, the European Commission has been developing modernisation plans for Galileo, to ensure that the system can respond to new challenges in the use of GNSS. He said that the EC’s approach is to capture the strategic priorities of the Member States, including in the Arctic, and to understand the changing GNSS environment.
Regarding the specific challenges posed by the Arctic region, he said that the Commission is in open dialogue with countries in the region to establish priorities. He said that Galileo provides good service overall in both navigation and SAR, and that, in combination with GPS and GLONASS, it would offer excellent service.
Guyader said that the Galileo modernisation includes plans for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), and emergency warning service and an ionosphere prediction service, which will make it possible to quickly react to sudden signal degradation.
In another presentation, a representative from academia noted that ionospheric scintillation, or the rapid modification of radio waves by small-scale structures in the ionosphere, was an important concern in the Arctic, primarily for service availability and continuity, rather than integrity. He said that dual-frequency GNSS offered a possible solution, as it would allow users to directly and robustly estimate ionospheric delay.
A potential solution to the problem of poor visibility of GEO satellites was offered by Kjersti Moldekelev, Senior Adviser at the Norwegian Space Centre. Moldeklev said that the company Space Norway was planning to launch HEO satellites in 2022, which would provide broadband access to the Arctic region. She said that if these HEO satellites were to carry SBAS payload, this would give the EU a foothold in the Arctic. "This will definitely be a solution for communications challenges in the region and perhaps for navigation challenges also,” she said.
Local stakeholders in Arctic navigation were well represented at the workshop, including the Finnish Defence Forces, the Finnish Communications Regulatory Authority, and companies such as Finnair, KNL Networks, and Reaktor. The stakeholders actively contributed to the workshop by giving keynote addresses, participating in panel discussions, and working in expert groups to build a roadmap towards resolving the challenges of Arctic navigation.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Participants in the Challenges in Arctic Navigation workshop in Olos, Muonio, Finland on April 16-18 discussed how GNSS can address some of the difficulties posed by navigation in the Arctic, in addition to how satellite navigation itself can be improved in the region, which is also a challenging environment for GNSS.
The Challenges in Arctic Navigation workshop was held under the Finnish Chairmanship of the Arctic Council. The workshop was organised by the Ministry and Communications (Mrs Seija Miettinen-Bellevergue) and the Finnish Geospatial Research Institute (Prof. Heidi Kuusniemi) and funded by the Ministry of Foreign Affairs.
A number of challenges to both conventional and satellite navigation were highlighted during the conference. These range from severe climatic and ice conditions, to the long distances involved in navigating in the region, all of which result in longer emergency response times for search and rescue. The challenge of sparse telecommunications coverage in the Arctic was also highlighted.
Low EGNOS coverage due to the poor visibility of geostationary (GEO) satellites received a lot of attention. This was highlighted as a significant obstacle to the expansion of SBAS-based navigation in Arctic aviation. Specifically, poor EGNOS LPV 200 coverage in the North and the Arctic means that it is not possible to use this service for landing aircraft. New satellite constellations in low-Earth or highly elliptic orbits were seen as a promising solution. Some participants also noted specific challenges with the reception of GNSS signals at Auroral latitudes.

Challenges and opportunities were discussed in Arctic navigation in Olos, Muonio
In addition to GNSS and telecommunications, navigation in the Arctic also benefits from other space-based technologies, especially in the maritime domain. "Sea currents are chaotic and not well predictable if satellite images are not available," Veli Luukkala, Chief Officer at Arctia Icebreaking Ltd., said.
While acknowledging these challenges in his address at the conference, Gian Gherardo Calini, the GSA’s Head of Market Development, also stressed some of the opportunities offered by EGNSS for different applications. The ones coming from implementation of EGNOS based procedures in aviation are: improved accessibility and operational capability, reduced environmental impacts and costs, infrastructure rationalisation, and increased safety. With regard to the low level of EGNOS coverage, he said that extension of the commitment areas for APV-I, NPA and LPV-200 up to 72ºN in Norway and Finland is planned for 2018 according to the EGNOS SoL Implementation Roadmap.
Watch this: EGNOS is growing
Regarding the issue of emergency response times, Calini said that, with the increased positioning accuracy provided by Galileo integrated into COSPAS-SARSAT, users would benefit from reduced detection times, improved localisation, increased availability and the return link function. “If a person in distress knows that their message has been heard and that help is on the way, this is very important. This is a key differentiator of Galileo,” he said.
In his address at the workshop, Eric Guyader, Galileo Programme Administrator at the European Commission, said that since 2013, the European Commission has been developing modernisation plans for Galileo, to ensure that the system can respond to new challenges in the use of GNSS. He said that the EC’s approach is to capture the strategic priorities of the Member States, including in the Arctic, and to understand the changing GNSS environment.
Regarding the specific challenges posed by the Arctic region, he said that the Commission is in open dialogue with countries in the region to establish priorities. He said that Galileo provides good service overall in both navigation and SAR, and that, in combination with GPS and GLONASS, it would offer excellent service.
Guyader said that the Galileo modernisation includes plans for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), and emergency warning service and an ionosphere prediction service, which will make it possible to quickly react to sudden signal degradation.
In another presentation, a representative from academia noted that ionospheric scintillation, or the rapid modification of radio waves by small-scale structures in the ionosphere, was an important concern in the Arctic, primarily for service availability and continuity, rather than integrity. He said that dual-frequency GNSS offered a possible solution, as it would allow users to directly and robustly estimate ionospheric delay.
A potential solution to the problem of poor visibility of GEO satellites was offered by Kjersti Moldekelev, Senior Adviser at the Norwegian Space Centre. Moldeklev said that the company Space Norway was planning to launch HEO satellites in 2022, which would provide broadband access to the Arctic region. She said that if these HEO satellites were to carry SBAS payload, this would give the EU a foothold in the Arctic. "This will definitely be a solution for communications challenges in the region and perhaps for navigation challenges also,” she said.
Local stakeholders in Arctic navigation were well represented at the workshop, including the Finnish Defence Forces, the Finnish Communications Regulatory Authority, and companies such as Finnair, KNL Networks, and Reaktor. The stakeholders actively contributed to the workshop by giving keynote addresses, participating in panel discussions, and working in expert groups to build a roadmap towards resolving the challenges of Arctic navigation.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Ve středu 30. května 2018 se v prostorách společnosti GEPRO uskuteční seminář určený především zpracovatelům komplexních pozemkových úprav na téma: PROLAND – zpracování etap RSS a PSZ.… >>
Zveřejnili jsme verze 13.28 našich produktů MISYS, MISYS-WEB, KOKEŠ, a PROLAND.
Stahovat je můžete z obvyklého umístění na našem download serveru:
… >>Zveřejnili jsme verze 13.28 našich produktů MISYS, MISYS-WEB, KOKEŠ, a PROLAND.
Stahovat je můžete z obvyklého umístění na našem download serveru:
… >>Zveřejnili jsme verze 13.28 našich produktů MISYS, MISYS-WEB, KOKEŠ, a PROLAND.
Stahovat je můžete z obvyklého umístění na našem download serveru:
… >>Zveřejnili jsme verze 13.28 našich produktů MISYS, MISYS-WEB, KOKEŠ, a PROLAND.
Stahovat je můžete z obvyklého umístění na našem download serveru:
… >>Evropská kosmická agentura se bude v následujících dnech prezentovat na mezinárodním aerosalónu ILA. Ten se uskuteční od 25. do 29. dubna na letišti Berlin ExpoCenter Airport.
Evropská kosmická agentura se bude v následujících dnech prezentovat na mezinárodním aerosalónu ILA. Ten se uskuteční od 25. do 29. dubna na letišti Berlin ExpoCenter Airport.
Press Coverage
ARCView, USA
Read the articlePress Coverage
Lidar News, USA
Read the articlePress Coverage
Construction News, UK
Read the articlePress Coverage
Water World, USA
Read the article
The next Sentinel satellite for Europe’s environmental monitoring Copernicus programme is poised for liftoff from the Plesetsk cosmodrome in northern Russia.
Nejnovější družice řady Sentinel pro evropský program monitorování životního prostředí GMES/Copernicus je připravena ke startu z kosmodromu Pleseck v severním Rusku.
Nejnovější družice řady Sentinel pro evropský program monitorování životního prostředí GMES/Copernicus je připravena ke startu z kosmodromu Pleseck v severním Rusku.