ÚŘAD PRO MORAVSKOSLEZSKÝ KRAJ
obsazuje služební místo odborný referent/vrchní referent – zápisy v řízení V a Z
Katastrálního pracoviště Opava, Katastrálního úřadu pro Moravskoslezský kraj
www.cuzk.cz/getattachment/61aba0a7-f390-4f73-bed1-77e8a5367e29/17_0627_1_03_17_VR_OP_zapisy-9-tr-PP_oznameni_0_vyhlaseni-_2_.pdf.aspx?chset=3f426525-6b21-4370-8468-0967e9e1454c&disposition=attachmentKATASTRÁLNÍ
ÚŘAD PRO MORAVSKOSLEZSKÝ KRAJ
obsazuje služební místo odborný referent/vrchní referent – zápisy v řízení V a Z
Katastrálního pracoviště Opava, Katastrálního úřadu pro Moravskoslezský kraj
KATASTRÁLNÍ ÚŘAD PRO MORAVSKOSLEZSKÝ KRAJ
obsazuje služební místo odborný referent/vrchní referent – zápisy v řízení V a Z
Katastrálního pracoviště Opava, Katastrálního úřadu pro Moravskoslezský kraj
V České republice je ještě 600 tisíc parcel vedených ve zjednodušené evidenci. Co to znamená a jaká rizika to přináší? Je možné takové pozemky vidět v digitální podobě?
Ve zjednodušené evidenci jsou evidovány zemědělské a lesní pozemky, jejichž hranice v terénu neexistují (nejsou jednoduše rozeznatelné - např. oddělené polní cestou, či lesem) a jsou sloučeny do větších půdních celků. Jedná se o parcely bývalých pozemkových evidencí jako jsou pozemkový katastr, evidence nemovitostí, přídělový operát či scelení.
Existence parcel ve zjednodušené evidenci je pouze dočasná, do doby jejich zobrazení v katastrální mapě (především v rámci zpracování katastrálních map do digitální podoby).
Vzhledem k tomu, že parcely ZE nejsou digitalizované, může být velmi problematické tyto parcely jednoduše “papírově” identifikovat. Jejich čísla jsou totiž součástí historických katastrálních map. Reálně je lze dohledat pouze v papírových mapách, které je třeba fyzicky objednat na příslušném katastrálním pracovišti.
V těchto mapách však můžou být často nepřesnosti, které mohou vést ke sporům s vlastníky okolních pozemků. Pokud sousedé užívají pozemky ve vzájemné shodě, drobnější nepřesnost jim zpravidla nečiní potíže. Spory ale mohou nastat při stavbě plotu, nebo například garáže či zahradního domku u hranic pozemku. S problémem se lze setkat i při koupi pozemku, kdy nový vlastník zaplatí i za metry, které mu fakticky nepatří.
Do doby, než u Vašich pozemků dojde k digitalizaci, což se děje v rámci pozemkových úprav, uvidíte své pozemky pouze v papírové podobě bez jakýchkoliv souvislostí s realitou v terénu.
Aplikace CleverAssets umožňuje zobrazení vlastněných nemovitostí on-line, a to včetně parcel zjednodušené evidence, dohromady nejen s ortofotem nebo rastry katastrálních map, ale i v souvislosti s jinými mapovými a databázovými podklady. Dále vytváří i prostorové analýzy pro požadované aspekty, např. územní plány, registr půdních bloků LPIS (tzv. registr půdních bloků). V aplikaci tak třeba jednoduše vidíte, který uživatel je zaregistrován v LPIS a tedy na vašem pozemku hospodaří, resp. měl by vám platit nájemné.
Co mi tedy zobrazení pozemků v digitální podobě přinese?
Tým CleverAssets
V České republice je ještě 600 tisíc parcel vedených ve zjednodušené evidenci. Co to znamená a jaká rizika to přináší? Je možné takové pozemky vidět v digitální podobě?
Ve zjednodušené evidenci jsou evidovány zemědělské a lesní pozemky, jejichž hranice v terénu neexistují (nejsou jednoduše rozeznatelné - např. oddělené polní cestou, či lesem) a jsou sloučeny do větších půdních celků. Jedná se o parcely bývalých pozemkových evidencí jako jsou pozemkový katastr, evidence nemovitostí, přídělový operát či scelení.
Existence parcel ve zjednodušené evidenci je pouze dočasná, do doby jejich zobrazení v katastrální mapě (především v rámci zpracování katastrálních map do digitální podoby).
Vzhledem k tomu, že parcely ZE nejsou digitalizované, může být velmi problematické tyto parcely jednoduše “papírově” identifikovat. Jejich čísla jsou totiž součástí historických katastrálních map. Reálně je lze dohledat pouze v papírových mapách, které je třeba fyzicky objednat na příslušném katastrálním pracovišti.
V těchto mapách však můžou být často nepřesnosti, které mohou vést ke sporům s vlastníky okolních pozemků. Pokud sousedé užívají pozemky ve vzájemné shodě, drobnější nepřesnost jim zpravidla nečiní potíže. Spory ale mohou nastat při stavbě plotu, nebo například garáže či zahradního domku u hranic pozemku. S problémem se lze setkat i při koupi pozemku, kdy nový vlastník zaplatí i za metry, které mu fakticky nepatří.
Do doby, než u Vašich pozemků dojde k digitalizaci, což se děje v rámci pozemkových úprav, uvidíte své pozemky pouze v papírové podobě bez jakýchkoliv souvislostí s realitou v terénu.
Aplikace CleverAssets umožňuje zobrazení vlastněných nemovitostí on-line, a to včetně parcel zjednodušené evidence, dohromady nejen s ortofotem nebo rastry katastrálních map, ale i v souvislosti s jinými mapovými a databázovými podklady. Dále vytváří i prostorové analýzy pro požadované aspekty, např. územní plány, registr půdních bloků LPIS (tzv. registr půdních bloků). V aplikaci tak třeba jednoduše vidíte, který uživatel je zaregistrován v LPIS a tedy na vašem pozemku hospodaří, resp. měl by vám platit nájemné.
Co mi tedy zobrazení pozemků v digitální podobě přinese?
Tým CleverAssets
V České republice je ještě 600 tisíc parcel vedených ve zjednodušené evidenci. Co to znamená a jaká rizika to přináší? Je možné takové pozemky vidět v digitální podobě?
Ve zjednodušené evidenci jsou evidovány zemědělské a lesní pozemky, jejichž hranice v terénu neexistují (nejsou jednoduše rozeznatelné - např. oddělené polní cestou, či lesem) a jsou sloučeny do větších půdních celků. Jedná se o parcely bývalých pozemkových evidencí jako jsou pozemkový katastr, evidence nemovitostí, přídělový operát či scelení.
Existence parcel ve zjednodušené evidenci je pouze dočasná, do doby jejich zobrazení v katastrální mapě (především v rámci zpracování katastrálních map do digitální podoby).
Vzhledem k tomu, že parcely ZE nejsou digitalizované, může být velmi problematické tyto parcely jednoduše “papírově” identifikovat. Jejich čísla jsou totiž součástí historických katastrálních map. Reálně je lze dohledat pouze v papírových mapách, které je třeba fyzicky objednat na příslušném katastrálním pracovišti.
V těchto mapách však můžou být často nepřesnosti, které mohou vést ke sporům s vlastníky okolních pozemků. Pokud sousedé užívají pozemky ve vzájemné shodě, drobnější nepřesnost jim zpravidla nečiní potíže. Spory ale mohou nastat při stavbě plotu, nebo například garáže či zahradního domku u hranic pozemku. S problémem se lze setkat i při koupi pozemku, kdy nový vlastník zaplatí i za metry, které mu fakticky nepatří.
Do doby, než u Vašich pozemků dojde k digitalizaci, což se děje v rámci pozemkových úprav, uvidíte své pozemky pouze v papírové podobě bez jakýchkoliv souvislostí s realitou v terénu.
Aplikace CleverAssets umožňuje zobrazení vlastněných nemovitostí on-line, a to včetně parcel zjednodušené evidence, dohromady nejen s ortofotem nebo rastry katastrálních map, ale i v souvislosti s jinými mapovými a databázovými podklady. Dále vytváří i prostorové analýzy pro požadované aspekty, např. územní plány, registr půdních bloků LPIS (tzv. registr půdních bloků). V aplikaci tak třeba jednoduše vidíte, který uživatel je zaregistrován v LPIS a tedy na vašem pozemku hospodaří, resp. měl by vám platit nájemné.
Co mi tedy zobrazení pozemků v digitální podobě přinese?
Tým CleverAssets
V České republice je ještě 600 tisíc parcel vedených ve zjednodušené evidenci. Co to znamená a jaká rizika to přináší? Je možné takové pozemky vidět v digitální podobě?
Ve zjednodušené evidenci jsou evidovány zemědělské a lesní pozemky, jejichž hranice v terénu neexistují (nejsou jednoduše rozeznatelné - např. oddělené polní cestou, či lesem) a jsou sloučeny do větších půdních celků. Jedná se o parcely bývalých pozemkových evidencí jako jsou pozemkový katastr, evidence nemovitostí, přídělový operát či scelení.
Existence parcel ve zjednodušené evidenci je pouze dočasná, do doby jejich zobrazení v katastrální mapě (především v rámci zpracování katastrálních map do digitální podoby).
Vzhledem k tomu, že parcely ZE nejsou digitalizované, může být velmi problematické tyto parcely jednoduše “papírově” identifikovat. Jejich čísla jsou totiž součástí historických katastrálních map. Reálně je lze dohledat pouze v papírových mapách, které je třeba fyzicky objednat na příslušném katastrálním pracovišti.
V těchto mapách však můžou být často nepřesnosti, které mohou vést ke sporům s vlastníky okolních pozemků. Pokud sousedé užívají pozemky ve vzájemné shodě, drobnější nepřesnost jim zpravidla nečiní potíže. Spory ale mohou nastat při stavbě plotu, nebo například garáže či zahradního domku u hranic pozemku. S problémem se lze setkat i při koupi pozemku, kdy nový vlastník zaplatí i za metry, které mu fakticky nepatří.
Do doby, než u Vašich pozemků dojde k digitalizaci, což se děje v rámci pozemkových úprav, uvidíte své pozemky pouze v papírové podobě bez jakýchkoliv souvislostí s realitou v terénu.
Aplikace CleverAssets umožňuje zobrazení vlastněných nemovitostí on-line, a to včetně parcel zjednodušené evidence, dohromady nejen s ortofotem nebo rastry katastrálních map, ale i v souvislosti s jinými mapovými a databázovými podklady. Dále vytváří i prostorové analýzy pro požadované aspekty, např. územní plány, registr půdních bloků LPIS (tzv. registr půdních bloků). V aplikaci tak třeba jednoduše vidíte, který uživatel je zaregistrován v LPIS a tedy na vašem pozemku hospodaří, resp. měl by vám platit nájemné.
Co mi tedy zobrazení pozemků v digitální podobě přinese?
Tým CleverAssets
Čtyřicet dva je odpověď, ale jaká je otázka? Vědci z University of Zurich chtěli zjistit, jak se buňky imunitního systému adaptují na stav beztíže, tak je poslali ve spolupráci s ESA jakou součást experimentu na Mezinárodní kosmickou stanici.
Čtyřicet dva je odpověď, ale jaká je otázka? Vědci z University of Zurich chtěli zjistit, jak se buňky imunitního systému adaptují na stav beztíže, tak je poslali ve spolupráci s ESA jakou součást experimentu na Mezinárodní kosmickou stanici.
Ve středu 22. března se bude v pražském prostoru NOD Roxy konat čtvrté setkání javascriptových vývojářů ngParty. Tradiční akci založili Martin Hochel a Viliam Elischer a na setkání tentokrát pozvali známé…
The post ngParty IV – setkání javascriptových vývojářů appeared first on GeoBusiness.
Just over a week after being lofted into orbit, the European Union’s Sentinel-2B satellite delivered its first images of Earth, offering a glimpse of the ‘colour vision’ it will provide for the Copernicus environmental monitoring programme.
The World ATM Congress is the must-attend trade event for the air traffic management sector, welcoming participants from across the world who come to showcase the latest innovations, services and products. One of those services on display in Madrid was the European Geostationary Navigation Overlay Service (EGNOS).
EGNOS, which was designed for aviation, has revolutionised the way we fly – creating more access to small and regional airports, increasing safety and facilitating business across Europe. From the commercial, regional, general and business aviation sectors to OEMs, airports and the end user – everyone benefits from EGNOS.
As to the airports – the focus of the congress – there are already over 430 EGNOS-enabled procedures available at over 300 different European airports. According to GSA Market Development Officer Carmen Aguilera, more than 500 procedures are planned. “These procedures will increase accessibility to regional airports, support decongestion of main hubs and provide suitable alternatives or backups for Instrument Landing Systems (ILS) – all while EGNOS implementation is spreading to more even countries,” she says.
Read this: EGNOS can crack the capacity crunch!
When you consider the safety and cost benefits of EGNOS implementation, it’s no wonder that so many airports are enthusiastic about publishing EGNOS-enabled localiser performance with vertical guidance (LPV) approaches. “Many of these 300 airports are small and regional airports that simply cannot afford the high cost of installing and maintaining ground-based ILS,” explains Aguilera.
“For Slovakia, which was one of the first countries to adopt EGNOS LPV procedures, it was simply a matter of increased safety,” says LPS SR Head of ATM Planning and Procedures Ratislav Primus. “With EGNOS, we can provide accurate vertical guidance – making airports across Slovakia much safer.”
As an alternative to ground-based ILS navigational aids, EGNOS utilises geostationary satellites and a network of ground stations to receive, analyse and augment GPS signals. With EGNOS, these satellite signals become suitable for such safety-critical applications as aircraft landings. Thus, the EGNOS LPV 200 service level provides vertical guidance that enables reaching a decision height as low as of 200 feet. This is a capability similar to what is provided by ground-based navigational aids, but without the same financial burden of installing, maintaining and calibrating ground equipment.
“I highly recommend implementing EGNOS Cat-I procedures leveraging LPV-200, especially for smaller airports, but also as a valuable add-on for larger airports,” says Austro Control Head of ATM-CNS Procedure Design Team Daniel Schaad. “It’s worked well for us and, increasingly, for airlines too. It is very innovative with ILS performance and we’re happy to have EGNOS procedures in our portfolio – I think it’s a good option for everybody.”
New models and retrofit too
Of course having all of these procedures isn’t very useful if nobody uses them. This is why, in addition to facilitating the launch of new EGNOS procedures, the GSA is also committed to working with manufacturers to ensure the latest aircraft and rotorcraft coming onto the market are EGNOS-ready. Thanks to these efforts, most new aircraft models have EGNOS-capability, including models from such leading manufacturers as ATR, Airbus, Bombardier, Cessna, Dassault Falcon Jets, Hawker, Beechcraft and Pilatus. According to the GSA, this list is expected to continue to increase in the near future.
And this: Europe’s aviation community enthusiastic about EGNOS
In addition to new aircraft models, the GSA also noted a rise in the number of available retrofit solutions. “These retrofit solutions enable in service aircraft to add EGNOS capabilities,” says Aguilera. “The GSA is working with operators and avionics manufacturers to increase the available retrofit options for the most common models.”
Moving up, moving fast
With EGNOS Version 3 set to enter service in the near future, EGNOS will also augment Galileo, thus further increasing performance and improving accuracy, resilience and safety.
“The principle behind EGNOS – of providing a space-based navigation system – means operators can equip their planes with fairly light-weight receivers and make use of satellite signals with minimal ground-based infrastructure required,” adds European Regional Airlines Association General Manager Policy and Technical Russel Dudley. “Speaking for our association and members, we are strong proponents of EGNOS as it has proved itself an incredibly useful and meaningful tool.”
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
The Horizon 2020-funded GHOST project is bringing Galileo’s robust positioning capabilities to smart transport systems.
All across Europe, the number of smart cities is multiplying. To tackle their growing needs and to guarantee efficient city planning and maintenance, many cities are engaged in massive investments in such key areas as street lighting, road maintenance, traffic and waste management. In parallel, public transportation is continuously evolving in terms of coverage, comfort and technology.
Within this context, the exploitation of Galileo and its integration with other sensors is key to developing concrete solutions for current and future smart city planning. Along these lines, the Horizon 2020-funded GHOST (Galileo Enhancement as Booster of the Smart Cities) project is designing, developing and validating an intelligent system for vehicles that equips existing public transport fleets with a Galileo-enabled camera and connects these vehicles to a web portal. The system automatically takes pictures of predefined points of interest (POI) based on the accurate position of the vehicle – provided by Galileo. All images are sent to a processing server capable of detecting such anomalies as potholes or a burnt-out street light. The system then uses the web portal to report these findings to the relevant authorities.
“At this point, GHOST is designed primarily for reporting street lighting anomalies and road deteriorations, monitoring public garbage collection and detecting double parking infractions or disabled parking spots occupied by unauthorised vehicles,” says Project Coordinator Claudia Maltoni. “In addition to these basic functions, we have also identified more advanced services, such as spotting bus-lane and congestion-charging-area violations, which will be implemented at a later date.”
The GHOST system’s key differentiator is its use of Galileo positioning, which gives it the capability to take autonomous snapshots with an error range of 1 to 10 metres (depending on the size of the POI). In densely populated urban environments, such a level of service is only possible with the combined use of Galileo, inertial sensors and Kalman filters. The Kalman filter is an algorithm that uses a series of measurements observed over time, as opposed to a single one, in order to increase precision.
The GHOST system’s key services:
Another unique feature is a free smartphone application that citizens can use to collect geo-localised snapshots. “Whenever an individual user sees an anomaly within a city’s infrastructure, all they have to do is snap a picture with their smartphone,” explains Maltoni. “This level of engagement not only enhances the overall system, but also empowers individual users to play a key role in urban upkeep.”
By taking advantage of the many vehicle movements happening in cities every day, GHOST proposes a competitive way to improve the efficiency of monitoring a city’s operations and infrastructure. Once finalised, the system will enable faster detection of double parking or road deterioration and help reduce traffic, accidents and pollution.
“Thanks to our field tests and favourable lab results, we are already setting up the next phase of the project, with the aim of taking the system’s technology to the next level,” concludes Maltoni. “This includes providing real-time, onboard image processing so that the system can handle such dynamic scenarios as bus-lane infractions and congestion-charging enforcement.”
The project is currently working to bring GHOST technology to market. Coordinators are busy making key contacts with interested public administrations, garbage collection companies and traffic police departments. It is also working to ensure that the system complies with all European regulatory standards, such as those related to circulation or privacy.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
The ESCAPE project, funded under the European GNSS Agency’s (GSA) Fundamental Elements programme, is developing an innovative positioning engine that exploits the newly available capabilities of Galileo.
With the declaration of Galileo Initial Services, companies, service providers and developers can now take full advantage of the more precise positioning and better performance that Galileo provides. All one needs is a Galileo-enabled chipset and/or receiver.
In the road transportation sector, the ESCAPE project (European Safety Critical Applications Positioning Engine) is doing just that: using Galileo to provide users with better positioning and performance.
Also read: Building the E-GNSS engine for the self-driving car
The project could prove critical in the advancement of the connected vehicle and autonomous driving, both of which require accurate and reliable positioning information for safety-critical applications. Whereas traditionally this positioning information is provided via multiple sources of sensor data, doing so requires the use of expensive radar/Lidar-based sensors and cameras not specifically designed for road transport use. In order to be viable, autonomous vehicles must offer both a cost-effective and a safe solution.
For the ESCAPE project, this balance can be found in its innovative positioning engine that exploits the newly available capabilities of Galileo. In parallel with the launch of Galileo Initial Services, the project is developing a Galileo-enabled chipset to be integrated into its dedicated engine designed specifically for automotive safety-critical applications. “The project is developing the first multi-constellation Galileo chipset receiver offering multi-frequency capability adapted to road applications – and in particular autonomous vehicles,” says Project Coordinator Jessica García. “The chipset will be integrated in an onboard positioning unit with unique localisation features that are tailored to the needs expressed by the applications of autonomous driving.”
The ESCAPE positioning engine is built on four core innovations. First, the engine integrates different localisation data sources, including multi-constellation/multi-frequency global navigation satellite systems (GNSS), intelligent cameras, inertial units, vehicle odometer and advanced navigation maps. Second, the integrity level it provides measures the trust associated with the real-time location estimates. “This degree of trust regarding the information provided to the vehicle is crucial for its use in safety-critical applications involving high levels of automation,” explains García.
Core features of the ESCAPE engine
Third, the project integrates the engine into a vehicle with autonomous driving capabilities. As a result, it fully enables the vehicle’s autonomous operations with a close-to-market engineered architecture. And last but not least, the engine will be the first solution featuring authentication provided by OS-NMA, an important Galileo differentiator.
Recently, the project reached an important milestone: the identification of the user-level requirements and the finalisation of a user-level safety analysis. “These user-level achievements are important because a major element that influences the design of the positioning engine is the level of automation that the user expects these vehicles to provide,” explains García.
To translate these requirements into solutions, the ESCAPE project has mapped user-level expectations into five major case studies. For each case, the project identified one or more test paths for the vehicle where algorithms and functionalities are to be tested. “This approach guarantees that the design of the engine is driven by actual user needs,” says García. “As a result, we will end up with a near-market-ready, safety-orientated GNSS-based engine set to transform road vehicle automation.”
Launched in October 2016, the ESCAPE project is led by the Spanish company FICOSA in collaboration with GMV, Renault, IFSTTAR, STMicroelectronics and the Istituto Superiore Mario Boella. The project is funded under the European GNSS Agency’s (GSA) Fundamental Elements programme, a research and development (R&D) funding mechanism supporting the development of GNSS-enabled chipsets, receivers and antennas.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Byla vytvořena nová mapová aplikace "Informace o technické infrastruktuře"
Aplikace zobrazuje digitální vektorová data, která jsou zveřejňována v souladu s §166 odst. 2 stavebního zákona jako informace o technické infrastruktuře a o jejím vlastníkovi obsažené v údaji o území, které byly poskytnuty podle § 27 stavebního zákona.
Mapovou aplikaci naleznete v sekci Územní plánování - > Informace o technické infrastruktuře.
Agentura GSA aktuálně nabízí nové otevřené výzvy ve svém programu Fundamental elements pro vývoj nových GNSS přijímačů s následujícím zaměřením: multikonstelační přijímač RAIM pro letectví, SBAS přijímač pro námořní dopravu, majáky MEOSAR pro nouzovou lokaci a uživatelské terminály autentifikované otevřené služby v silniční dopravě. Termíny pro podávání nabídek se pohybují mezi 19. - 31. května.
Od dubna máte další možnost absolvovat volně přístupný on-line kurz Location advantage. Naučíte se v něm využívat ekonomická a statistická data a aplikaci Business Analyst Online.
Po přihlášení do kurzu se můžete těšit na:
S kurzem získáte přístup do aplikace Business Analyst a naučíte se vyhodnocovat a vizualizovat data dostupná na platformě ArcGIS. Po dokončení kurzu obdržíte certifikát.
Přihlásit se můžete již dnes a výuka bude probíhat od 12. dubna do 23. května.
Inovativní letecký experiment nad rozlehlými zemědělskými plochami v Nizozemí nedávno poprvé ukázal, jak mohou vypadat radarové snímky pořízené družicemi pohybujícími se v tandemu.
Inovativní letecký experiment nad rozlehlými zemědělskými plochami v Nizozemí nedávno poprvé ukázal, jak mohou vypadat radarové snímky pořízené družicemi pohybujícími se v tandemu.
Horizon 2020-funded inLane project combines the precision of Galileo with computer vision technology to create the next generation of in-vehicle navigation systems.
Although today’s in-vehicle navigation systems are great at getting us from Point A to Point B, they tend to lack the details. For example, all navigation systems currently on the market provide the user with reliable guidance, usually in the form of a simple line depicting the road and direction of travel. However, none provide lane-level positioning or map matching. Even when traveling on a multi-lane expressway, the navigation map only shows a single line.
The reason: these navigation devices use low-cost global navigation satellite system (GNSS) receivers, meaning that they cannot provide the accurate positioning needed to depict multiple lanes. In order to provide more complex applications, such as lane-level information, lane-level navigation and scenario-based prioritised alerts, more accurate and reliable positioning is required.
To get this necessary level of accuracy, the Horizon 2020-funded inLane project is working to fuse the precision of Galileo with computer vision technology. By combining these two technologies, they plan to create the first low-cost, next-generation navigation system capable of providing lane-level and precise turn-by-turn navigation.
The inLane solution will also be able to detect new objects not currently displayed on the navigation map, such as a new traffic signal. When such an object is detected, the system sends this information to the back-end server. As the back-end server receives similar information from other vehicles, it will update the maps accordingly.
By combining the precision of Galileo with computer vision technology, the inLane system will:
“By delivering lane-level information to an in-vehicle navigation system, and combining this with the opportunity for vehicles to exchange information between themselves, drivers will be able to select the optimal lane for travel, even in dense traffic,” says the project’s Technical Coordinator Gorka Velez of VicomTech, one of the inLane consortium members. “With the inLane system, every driver will be able to choose the appropriate lane for exiting, thus reducing the risks associated with the last-second lane changes that are all too common on our busy expressways.”
In order to ensure the inLane system provides information that is useful to actual drivers, the project wants to hear from you. Via a short survey, the project wants to know how you currently use your in-vehicle navigation device. For example, do you get your guidance via the audio or visual cues, or both? It also asks what type of additional features you would find helpful, such as enhanced driver awareness, intelligent speed alerts, simple lane allocation, traffic sign notification, etc.
“The intention of this survey is to get people thinking about advanced driver assistance systems [ADAS] and how these will impact their driving experience,” says Velez. “By better understanding their expectations and concerns, we will be better positioned to design an end-user-focused ADAS.”
The survey, which can be found here, only takes a few minutes. As an added incentive, all participants can have their name entered in a draw for a chance to win a new TomTom G0520 navigation system! The deadline to participate is 30 March 2017.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).