Vizí společnosti Planet je družicovým snímkováním sledovat celou Zemi, aby tato data pomáhala při identifikaci a mapování přírodních jevů či sledování globálních změn. K tomu jí pomáhá přes 130 družic, které každý den snímají Zemi s rozlišením 3–5 metrů.
Satelitní snímky je možné získat několika způsoby. První způsob, jak snímky od Planet získat, je prostřednictvím webového prohlížeče Planet Explorer. Po registraci je možné vyhledávat pomocí filtrů.
Další způsob, jak získat satelitní snímky, je možný díky našemu partnerství s Planet. Snímky či konzultaci o službě vám rádi zajistíme. Vedle toho si můžete nainstalovat doplněk Planet ArcGIS Add-In V2, jehož prostřednictvím budete mít pořízené snímky k dispozici.
Planet ArcGIS Add-In V2 je již druhá verze doplňku ArcGIS Pro, která vedle dosavadních možností vyhledávání a stahování snímků či využití podkladových map PlanetScope a SkySat obsahuje novinky:
Doplněk je dostupný ke stažení na ArcGIS MarketPlace. Přístup do úložiště Planet pak probíhá na základě zákaznického účtu Planet.
Systémové požadavky k instalaci doplňku Planet ArcGIS Add-In V2, popis procesu instalace a konfigurace naleznete na stránkách Esri
Nejaktuálnější satelitní snímky Země. Snímky z Planet dostupné přímo v ArcGIS Pro.
Chcete-li využít snímky Planet, nebo chcete-li pomoci se založením svého zákaznického účtu u společnosti Planet, kontaktujte nás na adrese obchod@arcdata.cz. Rádi vám pomůžeme.
Vizí společnosti Planet je družicovým snímkováním sledovat celou Zemi, aby tato data pomáhala při identifikaci a mapování přírodních jevů či sledování globálních změn. K tomu jí pomáhá přes 130 družic, které každý den snímají Zemi s rozlišením 3–5 metrů.
Satelitní snímky je možné získat několika způsoby. První způsob, jak snímky od Planet získat, je prostřednictvím webového prohlížeče Planet Explorer. Po registraci je možné vyhledávat pomocí filtrů.
Další způsob, jak získat satelitní snímky, je možný díky našemu partnerství s Planet. Snímky či konzultaci o službě vám rádi zajistíme. Vedle toho si můžete nainstalovat doplněk Planet ArcGIS Add-In V2, jehož prostřednictvím budete mít pořízené snímky k dispozici.
Planet ArcGIS Add-In V2 je již druhá verze doplňku ArcGIS Pro, která vedle dosavadních možností vyhledávání a stahování snímků či využití podkladových map PlanetScope a SkySat obsahuje novinky:
Doplněk je dostupný ke stažení na ArcGIS MarketPlace. Přístup do úložiště Planet pak probíhá na základě zákaznického účtu Planet.
Systémové požadavky k instalaci doplňku Planet ArcGIS Add-In V2, popis procesu instalace a konfigurace naleznete na stránkách Esri
Nejaktuálnější satelitní snímky Země. Snímky z Planet dostupné přímo v ArcGIS Pro.
Chcete-li využít snímky Planet, nebo chcete-li pomoci se založením svého zákaznického účtu u společnosti Planet, kontaktujte nás na adrese obchod@arcdata.cz. Rádi vám pomůžeme.
The Strait of Gibraltar is featured in this false-colour image captured by the Copernicus Sentinel-2 mission.
The Strait of Gibraltar is featured in this false-colour image captured by the Copernicus Sentinel-2 mission.
The Strait of Gibraltar is featured in this false-colour image captured by the Copernicus Sentinel-2 mission.
Data LPISu, katastrální data, družicová data, data z OpenStreetMap, data Land Use a Land Cover… Opakované stahování a napojování dat do jakékoliv aplikace dá poměrně časově zabrat. Proto vzniknul Lesprojekt cloud, což je webová služba pro snadné připojení zdrojů dat bez nutnosti se starat o stahování. Lesprojekt cloud totiž stahování dat zařídí automaticky. Těch důvodů, […]
The post 6 důvodů, proč ve svých zemědělských aplikacích používat Lesprojekt cloud (TZ) appeared first on GISportal.cz.
Ředitelka Krajského úřadu Královéhradeckého kraje vyhlašuje výběrové řízení č. 07/2021 (VR_07_21) na obsazení pracovního místa Referent odboru analýz a podpory řízení.
Bližší informace nalezete ZDE.
Trimble Express 2021 musel být odložen, o novém termínu Vás budeme informovat. Omlouváme se a děkujeme za pochopení.
The post Trimble Express – Živě z terénu first appeared on GEOTRONICS Praha.
Despite ESA’s GOCE mission ending over seven years ago, scientists continue to use this remarkable satellite’s gravity data to delve deep and unearth secrets about our planet. Recent research shows how scientists have combined GOCE data with measurements taken at the surface to generate a new model of Earth’s crust and upper mantle. This is the first time such a model has been created this way – and it is shedding new light on processes of plate tectonics, which, in turn, are related to phenomena such as earthquakes and volcanic eruptions.
pro návrh a statické výpočty nosíků (zatížení, podpory, momenty, posouvající síly, kroutící momenty, torzní momenty, rovnoměrné zatížení...)
The post IDX BEAM Analysis – statika nosníků appeared first on ŠPINAR – software.
Vážení zákazníci,
máme pro Vás připravený program IDX Beam Analysis Tool js TurboCAD Platinum 26 v akční ceně do 18.3.2021
The post IDX BEAM Analysis pro statiku nosníků appeared first on ŠPINAR – software.
The European GNSS Agency (GSA) organised an online workshop on 3 March to provide an in-depth analysis of the performance of Galileo and show how this performance is evaluated and how it is crucial for service provision in every user application.
The workshop focused in particular on the Galileo Open Service (OS) as defined in the OS Service Definition Document (SDD) and the Programme’s needs for performance monitoring against the defined Minimum Performance Levels (MPLs) and Key Performance Indicators (KPIs). Attention was also paid to publicly available data, products and tools that can be used for GNSS monitoring. In addition to the GSA, the workshop involved representatives of the European Commission, the European Space Agency (ESA) and of the EU Member States and gathered nearly 500 participants.
At the workshop, a number of technical topics were addressed.
Read this: EUSW - status of Galileo services
The GSA has established the Galileo Reference Centre (GRC) with a primary mission of providing an independent means to monitor and evaluate the performance of the Galileo services and the quality of the Signal-in-Space. The GRC is the European hub for these activities, integrating contributions from European national entities, such as research centres, timing laboratories, and national space agencies.
Watch this: Galileo Reference Centre
Performance is measured against Key Performance Indicators (KPIs), the computation of which depends on GNSS data measurements and derived reference products (e.g. precise orbits, satellites clock corrections). It can also be assessed based on publicly available data and products, which exist with various levels of quality, reliability and latency. To be able to compare results obtained by independent sources, it is important to have a common understanding, guidelines for monitoring and a sound assessment methodology. This is what the Galileo performance workshop aims to provide.
All the presentations delivered during the workshop are now available here.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Nejen naše planeta, ale i region mají omezené zdroje, což nevyhnutelně vede k potřebě intenzivního využívání veřejné hromadné dopravy jako alternativy k osobní automobilové přepravě. V Brně a okolí byl proto zaveden Integrovaný dopravní systém Jihomoravského kraje (IDS JMK), který poskytuje levnou, rychlou, spolehlivou a ekologickou možnost přepravy pro 1,2 milionů lidí. Má 161 zón, víc jak […]
The post Aplikace pro modelování dostupnosti v Jihomoravském kraji (TZ) appeared first on GISportal.cz.
In a first for any satellite navigation system, Galileo has achieved the first positioning fix based on open-service navigation signals carrying authenticated data. Intended as a way to combat malicious ‘spoofing’ of satnav signals, this authentication testing began at ESA’s Navigation Laboratory – the same site where the very first Galileo positioning fix took place back in 2013.
In a first for any satellite navigation system, Galileo has achieved a positioning fix based on open-service navigation signals carrying authenticated data. Intended as a way to combat malicious ‘spoofing’ of satnav signals, this authentication testing began at ESA’s Navigation Laboratory – the same site where the very first Galileo positioning fix took place back in 2013.
In a first for any satellite navigation system, Galileo has achieved a positioning fix based on open-service navigation signals carrying authenticated data. Intended as a way to combat malicious ‘spoofing’ of satnav signals, this authentication testing began at ESA’s Navigation Laboratory – the same site where the very first Galileo positioning fix took place back in 2013.
Under the management of the European GNSS Agency (GSA), a collision avoidance manoeuvre for satellite GSAT0219 was performed over the past weekend. This manoeuvre was conducted following a collision risk alert received from EU Space Surveillance and Tracking (EUSST).
On 25 February, the Galileo Service Operator (GSOp) received from the EUSST a collision risk alert between GSAT0219 and an inert Ariane 4 upper stage launched in 1989. Following this warning, GSOp started to closely monitor the risk, in close cooperation with EUSST that was refining its predictions.
In line with operational procedures, GSOp informed the GSA of the situation. In a joint effort with the European Commission, the GSA managed the follow-up activities. The effective cooperation between EUSST and the GSA/GSOp was instrumental to the success of the mission and bears testimony to the need for efficient cooperation between different organisations in the space sector.
Following refinement of the Ariane 4 orbit, the risk of collision was still unacceptably high, so, after assessment of different strategies and associated risks on the service provision, the GSA authorised the execution of an avoidance manoeuvre. The satellite was taken out of service on 5 March, and users were informed via NAGU #2021009. The collision avoidance manoeuvre was performed shortly thereafter, by temporarily relocating the satellite away from its nominal position. Satellite GSAT0219 is expected to be reintroduced into service in Calendar Week 11 (15.03 – 21.03) after the completion of two station keeping manoeuvres to reposition it into its nominal operational orbit. Users will be kept informed via NAGUs.
This is the first time a collision avoidance manoeuvre has been performed for a satellite in the Galileo constellation.
Atraktivita regionů je jedním z faktorů, které hodnotí význam geografických oblastí, jejich konkurenceschopnost, přitažlivost pro různé formy podnikání a také potenciál pro spolupráci. Webinář, který se koná 16. března od 13:00, představí atraktivitu regionů zjišťovanou na základě statistických dat (tzv. evidence-based přístup). Atraktivita regionů je relativně subjektivní pohled a z pohledu různých jedinců a organizací […]
The post Jak měřit a porovnávat atraktivitu regionů (webinář) appeared first on GISportal.cz.
For the first time, an international team of scientists has used magnetic data from ESA’s Swarm satellite mission together with aeromagnetic data to help reveal the mysteries of the geology hidden beneath Antarctica’s kilometres-thick ice sheets, and link Antarctica better to its former neighbours.
With the need for satellite data to be received more frequently for faster weather forecasting updates in the Arctic, ESA has signed a contract with OHB Sweden to a build prototype satellite for the Arctic Weather Satellite mission.
With the need for satellite data to be received more frequently for faster weather forecasting updates in the Arctic, ESA has signed a contract with OHB Sweden to a build prototype satellite for the Arctic Weather Satellite mission.
After smartphones, wearables are the second most sold GNSS device, with 70 million shipments in 2019 alone. Given this trend, the European GNSS Agency (GSA) was motivated to test smartwatch devices under various conditions. Three devices were selected that, to a certain extent, characterise the Galileo-enabled device offering on the market in 2020: the Suunto 9, Samsung Galaxy Watch Active 2 and Garmin Fenix 6X PRO. The tests delivered some interesting results.
The tests were carried out by the Airbus Systems Engineering and Technical Assistance (SETA) team under a Galileo System Support contract with the GSA. The main objective was to evaluate the navigation performance of the wearables in different receiver configurations and environments. To evaluate the devices’ performance, the tests assessed positioning accuracy and PVT availability.
All the tests were carried out close to an Airbus site south of Munich, and included an open sky static test, an open sky pedestrian test, and an open sky bike test. In addition, there were three suburban dynamic tests (two pedestrian – one with the watch worn on the wrist and one on a backpack, and one bike test), an urban static test, and two forest dynamic tests (pedestrian and bike), both of which had alternating vegetation of broadleaf trees and conifers.
Read this: Point.IoT 2021 – another year of exciting Galileo-powered IoT innovations
Each test was executed three times in order to cover all the possible GNSS receiver configurations. Subtests with the corresponding GNSS receiver configurations are presented in the table below.
Figure 1: Data collection of forest dynamic pedestrian test case
Device | Possible GNSS receiver configurations | Release | Single-/Dual-Frequency |
Suunto 9 |
GPS only GPS + Glonass GPS + Galileo |
June 2018 | SF |
Samsung Galaxy Watch Active 2 |
There is no option to select constellations. According to the specification receiver supports the following constellations: GPS, Glonass, Beidou and Galileo |
September 2019 | SF |
Garmin Fenix 6X PRO |
GPS only GPS + Glonass GPS + Galileo |
August 2019 | SF |
Table 1: Wearables under test
In general, the devices achieved the highest accuracy when GPS satellites were used together with an additional GNSS. In half of the scenarios, GPS + Galileo showed the best performance.
Suunto 9 outperformed the other two smart-watches in most of the tests by achieving the best positioning accuracy. The PVT availability (up to 90%) of the Suunto 9 was also higher than that of the Garmin and Samsung smartwatches, the only exception being the static scenarios. The results for Suunto 9 are shown in the tables and charts below, demonstrating the achievable performance with the subset of tested devices.
When looking at the best results in terms of accuracy, there is a big difference between wearing the smartwatch on your wrist and having it attached to a backpack. Accuracy is much better when the watch is on a backpack with the watch face, and therefore the GNSS antenna, pointing directly to the sky. The results obtained with the watch worn on the wrist were the worst, because the antenna is not pointing directly at the sky and body shadowing obstructs the signals. This decrease in accuracy could be partially resolved by using higher quality antennas.
Suunto 9 – suburban test cases | Horizontal accuracy [m] on a given percentile | ||
Configuration / Watch placement | 50.0% | 63.2% | 95.0% |
GPS + Galileo / Wrist | 5.29 | 6.31 | 14.74 |
GPS + Galileo / Backpack | 2.08 | 2.35 | 3.44 |
Table 2: Comparison of Suunto 9 performance (horizontal accuracy under GPS + Galileo configuration) on wrist and backpack
And this: Galileo delivers accuracy; drones deliver solutions
Another solution is to install the antenna outside the smartwatch, so that GNSS signals can reach the antenna directly. This would also reduce the level of interference between the antenna and other components. However, wearing the watch attached to a backpack or using external antenna is not a solution for the vast majority of users. In any case, there is still room for improvement, especially in more challenging environments, but better performance may be achieved with dual-frequency chipsets, soon to be available on the European market, or with higher quality antennas.
The tests show that Galileo provides added value in terms of accuracy and availability, of which receiver manufacturers are becoming increasingly aware. This added value was clearly demonstrated with the Suunto 9 results: in 52% of the computed statistics, the GPS + Galileo configuration showed better performance than GPS only and GPS + Glonass. This means that, thanks to Galileo, the data collected during users’ activities will be more accurate and allow for improved performance.
Currently over a hundred wearables are benefitting from Galileo’s added accuracy and availability. To check out if your wearable is on the list, click here.
Figure 2: Example of results: Open sky dynamic bike test case – Suunto 9 – horizontal accuracy
Open sky dynamic bike test case: Suunto 9 | Horizontal accuracy [m] on a given percentile | ||
Configuration | 50.0% | 63.2% | 95.0% |
GPS only | 4.20 | 4.76 | 7.45 |
GPS + Glonass | 4.78 | 5.25 | 7.82 |
GPS + Galileo | 2.77 | 3.32 | 5.87 |
Table 3: Open sky dynamic bike test case: Suunto 9 – horizontal accuracy on a given percentiles
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
After smartphones, wearables are the second most sold GNSS device, with 70 million shipments in 2019 alone. Given this trend, the European GNSS Agency (GSA) was motivated to test smartwatch devices under various conditions. Three devices were selected that, to a certain extent, characterise the Galileo-enabled device offering on the market in 2020: the Suunto 9, Samsung Galaxy Watch Active 2 and Garmin Fenix 6X PRO. The tests delivered some interesting results.
The tests were carried out by the Airbus Systems Engineering and Technical Assistance (SETA) team under a Galileo System Support contract with the GSA. The main objective was to evaluate the navigation performance of the wearables in different receiver configurations and environments. To evaluate the devices’ performance, the tests assessed positioning accuracy and PVT availability.
All the tests were carried out close to an Airbus site south of Munich, and included an open sky static test, an open sky pedestrian test, and an open sky bike test. In addition, there were three suburban dynamic tests (two pedestrian – one with the watch worn on the wrist and one on a backpack, and one bike test), an urban static test, and two forest dynamic tests (pedestrian and bike), both of which had alternating vegetation of broadleaf trees and conifers.
Read this: Point.IoT 2021 – another year of exciting Galileo-powered IoT innovations
Each test was executed three times in order to cover all the possible GNSS receiver configurations. Subtests with the corresponding GNSS receiver configurations are presented in the table below.
Figure 1: Data collection of forest dynamic pedestrian test case
Device | Possible GNSS receiver configurations | Release | Single-/Dual-Frequency |
Suunto 9 |
GPS only GPS + Glonass GPS + Galileo |
June 2018 | SF |
Samsung Galaxy Watch Active 2 |
There is no option to select constellations. According to the specification receiver supports the following constellations: GPS, Glonass, Beidou and Galileo |
September 2019 | SF |
Garmin Fenix 6X PRO |
GPS only GPS + Glonass GPS + Galileo |
August 2019 | SF |
Table 1: Wearables under test
In general, the devices achieved the highest accuracy when GPS satellites were used together with an additional GNSS. In half of the scenarios, GPS + Galileo showed the best performance.
Suunto 9 outperformed the other two smart-watches in most of the tests by achieving the best positioning accuracy. The PVT availability (up to 90%) of the Suunto 9 was also higher than that of the Garmin and Samsung smartwatches, the only exception being the static scenarios. The results for Suunto 9 are shown in the tables and charts below, demonstrating the achievable performance with the subset of tested devices.
When looking at the best results in terms of accuracy, there is a big difference between wearing the smartwatch on your wrist and having it attached to a backpack. Accuracy is much better when the watch is on a backpack with the watch face, and therefore the GNSS antenna, pointing directly to the sky. The results obtained with the watch worn on the wrist were the worst, because the antenna is not pointing directly at the sky and body shadowing obstructs the signals. This decrease in accuracy could be partially resolved by using higher quality antennas.
Suunto 9 – suburban test cases | Horizontal accuracy [m] on a given percentile | ||
Configuration / Watch placement | 50.0% | 63.2% | 95.0% |
GPS + Galileo / Wrist | 5.29 | 6.31 | 14.74 |
GPS + Galileo / Backpack | 2.08 | 2.35 | 3.44 |
Table 2: Comparison of Suunto 9 performance (horizontal accuracy under GPS + Galileo configuration) on wrist and backpack
And this: Galileo delivers accuracy; drones deliver solutions
Another solution is to install the antenna outside the smartwatch, so that GNSS signals can reach the antenna directly. This would also reduce the level of interference between the antenna and other components. However, wearing the watch attached to a backpack or using external antenna is not a solution for the vast majority of users. In any case, there is still room for improvement, especially in more challenging environments, but better performance may be achieved with dual-frequency chipsets, soon to be available on the European market, or with higher quality antennas.
The tests show that Galileo provides added value in terms of accuracy and availability, of which receiver manufacturers are becoming increasingly aware. This added value was clearly demonstrated with the Suunto 9 results: in 52% of the computed statistics, the GPS + Galileo configuration showed better performance than GPS only and GPS + Glonass. This means that, thanks to Galileo, the data collected during users’ activities will be more accurate and allow for improved performance.
Currently over a hundred wearables are benefitting from Galileo’s added accuracy and availability. To check out if your wearable is on the list, click here.
Figure 2: Example of results: Open sky dynamic bike test case – Suunto 9 – horizontal accuracy
Open sky dynamic bike test case: Suunto 9 | Horizontal accuracy [m] on a given percentile | ||
Configuration | 50.0% | 63.2% | 95.0% |
GPS only | 4.20 | 4.76 | 7.45 |
GPS + Glonass | 4.78 | 5.25 | 7.82 |
GPS + Galileo | 2.77 | 3.32 | 5.87 |
Table 3: Open sky dynamic bike test case: Suunto 9 – horizontal accuracy on a given percentiles
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).