
Connected and Automated Driving is transforming the way vehicles are operated and integrated in the connected mobility ecosystem, and Europe’s GNSS programme Galileo is at the heart of this transformation. Join us at the University of Technology of Compiègne, France, on 27 November for a live demonstration of the first Galileo-enabled autonomous vehicle made in the EU and see for yourself how Galileo is driving the future of autonomous vehicles.
Participants in the day-long event will have a unique opportunity to ride in an autonomous vehicle fitted with a Galileo-enabled ESCAPE GNSS engine (EGE). The EGE is an innovative positioning engine that leverages the Galileo signals and services to provide a core positioning component in autonomous vehicles. It was designed and prototyped by the ESCAPE project, funded under the European GNSS Agency’s (GSA) Fundamental Elements programme.
Cars equipped with this engine will be showcased in two demonstrations at the event. The first demo will involve two Renault Zoe electric cars being (autonomously) driven at the same time. During the demo, participants and journalists will have a unique opportunity to get on board the vehicles and take a driverless ride on the University of Technology of Compiègne (UTC) track.
Read this: ESCAPE project launches positioning module for autonomous driving
In the second demo, a third vehicle will be driven on a public road in Compiègne to demonstrate its performance in a peri-urban environment. There will be no passengers in this car, but the participants will be able to watch a live video of the test broadcast via 4G with the estimated position obtained using the EGE equipped with the RTK high accuracy technique. The demos will be followed by a Q&A session where journalists and other participants will be able to put their questions to the developers of the engine.
“The EGE hardware has been developed based on state-of-the-art practices in the design of automotive electronic control units and is based on the first automotive grade GNSS and Galileo receiver. As a result, all of its interfaces and configurations have been developed to be fully compliant with the most widely recognised trends in the sector,” said GSA Head of Market Development Fiammetta Diani.
Participation in the event is free of charge, but places are limited. So if you are interested in the future of mobility and would like to take part in this exciting live demo, sign up now!
The demos will be followed by a series of presentations on the ESCAPE project, including use cases for autonomous driving, high accuracy and integrity, localisation standards, and HD maps for localisation. There will also be a presentation of the TESEO APP receiver from STMicroelectronics, which combines multiple-frequency and multi-constellation tracking and enables autonomous-driving systems to combine precise positioning with sensor data for enhanced performance, safety and reliability.
Following the presentations, there will be a workshop on localisation integrity for autonomous driving, with discussions on relative and absolute localisation and integrity estimation for land-based applications. All in all, this is a not-to-be-missed event for anybody interested in intelligent transport systems and autonomous driving.
The EGE prototype design includes several major components, including a novel multi-frequency, multi-constellation automotive-grade GNSS receiver. The main distinguishing feature of the ESCAPE receiver is its ability to precisely and simultaneously process signals from two different GNSS bands and from different satellite constellations. Although this capability is common in high-end professional receivers, it is cutting-edge in the automotive Tier-2 panorama.
And this: European GNSS supports smarter mobility
The receiver is also a first-of-a-kind device in its segment to support the new Navigation Message Authentication (NMA) service of Galileo, the additional anti-spoofing service to be offered by Galileo on the open E1 signal. Finally, the new GNSS receiver comes with several core signal-processing enhancements: better receiver sensitivity and tracking capability, multipath mitigation, more intermediate frequency (IF) channels and flexibility in routing IF samples, jamming detection and mitigation, and optimisation of the GNSS data flow.
The result is an ESCAPE GNSS sensor that combines a high-end GNSS technology traditionally reserved for professional applications, innovative dual-band Galileo processing, as well as all the hardware and software safety aspects that are needed to certify the component for the automotive market.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Connected and Automated Driving is transforming the way vehicles are operated and integrated in the connected mobility ecosystem, and Europe’s GNSS programme Galileo is at the heart of this transformation. Join us at the University of Technology of Compiègne, France, on 27 November for a live demonstration of the first Galileo-enabled autonomous vehicle made in the EU and see for yourself how Galileo is driving the future of autonomous vehicles.
Participants in the day-long event will have a unique opportunity to ride in an autonomous vehicle fitted with a Galileo-enabled ESCAPE GNSS engine (EGE). The EGE is an innovative positioning engine that leverages the Galileo signals and services to provide a core positioning component in autonomous vehicles. It was designed and prototyped by the ESCAPE project, funded under the European GNSS Agency’s (GSA) Fundamental Elements programme.
Cars equipped with this engine will be showcased in two demonstrations at the event. The first demo will involve two Renault Zoe electric cars being (autonomously) driven at the same time. During the demo, participants and journalists will have a unique opportunity to get on board the vehicles and take a driverless ride on the University of Technology of Compiègne (UTC) track.
Read this: ESCAPE project launches positioning module for autonomous driving
In the second demo, a third vehicle will be driven on a public road in Compiègne to demonstrate its performance in a peri-urban environment. There will be no passengers in this car, but the participants will be able to watch a live video of the test broadcast via 4G with the estimated position obtained using the EGE equipped with the RTK high accuracy technique. The demos will be followed by a Q&A session where journalists and other participants will be able to put their questions to the developers of the engine.
“The EGE hardware has been developed based on state-of-the-art practices in the design of automotive electronic control units and is based on the first automotive grade GNSS and Galileo receiver. As a result, all of its interfaces and configurations have been developed to be fully compliant with the most widely recognised trends in the sector,” said GSA Head of Market Development Fiammetta Diani.
Participation in the event is free of charge, but places are limited. So if you are interested in the future of mobility and would like to take part in this exciting live demo, sign up now!
The demos will be followed by a series of presentations on the ESCAPE project, including use cases for autonomous driving, high accuracy and integrity, localisation standards, and HD maps for localisation. There will also be a presentation of the TESEO APP receiver from STMicroelectronics, which combines multiple-frequency and multi-constellation tracking and enables autonomous-driving systems to combine precise positioning with sensor data for enhanced performance, safety and reliability.
Following the presentations, there will be a workshop on localisation integrity for autonomous driving, with discussions on relative and absolute localisation and integrity estimation for land-based applications. All in all, this is a not-to-be-missed event for anybody interested in intelligent transport systems and autonomous driving.
The EGE prototype design includes several major components, including a novel multi-frequency, multi-constellation automotive-grade GNSS receiver. The main distinguishing feature of the ESCAPE receiver is its ability to precisely and simultaneously process signals from two different GNSS bands and from different satellite constellations. Although this capability is common in high-end professional receivers, it is cutting-edge in the automotive Tier-2 panorama.
And this: European GNSS supports smarter mobility
The receiver is also a first-of-a-kind device in its segment to support the new Navigation Message Authentication (NMA) service of Galileo, the additional anti-spoofing service to be offered by Galileo on the open E1 signal. Finally, the new GNSS receiver comes with several core signal-processing enhancements: better receiver sensitivity and tracking capability, multipath mitigation, more intermediate frequency (IF) channels and flexibility in routing IF samples, jamming detection and mitigation, and optimisation of the GNSS data flow.
The result is an ESCAPE GNSS sensor that combines a high-end GNSS technology traditionally reserved for professional applications, innovative dual-band Galileo processing, as well as all the hardware and software safety aspects that are needed to certify the component for the automotive market.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

Connected and Automated Driving is transforming the way vehicles are operated and integrated in the connected mobility ecosystem, and Europe’s GNSS programme Galileo is at the heart of this transformation. Join us at the University of Technology of Compiègne, France, on 27 November for a live demonstration of the first Galileo-enabled autonomous vehicle made in the EU and see for yourself how Galileo is driving the future of autonomous vehicles.
Participants in the day-long event will have a unique opportunity to ride in an autonomous vehicle fitted with a Galileo-enabled ESCAPE GNSS engine (EGE). The EGE is an innovative positioning engine that leverages the Galileo signals and services to provide a core positioning component in autonomous vehicles. It was designed and prototyped by the ESCAPE project, funded under the European GNSS Agency’s (GSA) Fundamental Elements programme.
Cars equipped with this engine will be showcased in two demonstrations at the event. The first demo will involve two Renault Zoe electric cars being (autonomously) driven at the same time. During the demo, participants and journalists will have a unique opportunity to get on board the vehicles and take a driverless ride on the University of Technology of Compiègne (UTC) track.
Read this: ESCAPE project launches positioning module for autonomous driving
In the second demo, a third vehicle will be driven on a public road in Compiègne to demonstrate its performance in a peri-urban environment. There will be no passengers in this car, but the participants will be able to watch a live video of the test broadcast via 4G with the estimated position obtained using the EGE along with RTK. The demos will be followed by a Q&A session where journalists and other participants will be able to put their questions to the developers of the engine.
“The EGE hardware has been developed based on state-of-the-art practices in the design of automotive electronic control units and is based on the first automotive grade GNSS and Galileo receiver. As a result, all of its interfaces and configurations have been developed to be fully compliant with the most widely recognised trends in the sector,” said GSA Head of Market Development Fiammetta Diani.
Participation in the event is free of charge, but places are limited. So if you are interested in the future of mobility and would like to take part in this exciting live demo, sign up now!
The demos will be followed by a series of presentations on the ESCAPE project, including use cases for autonomous driving, high accuracy and integrity, localisation standards, and HD maps for localisation. There will also be a presentation of the TESEO APP receiver from STMicroelectronics, which combines multiple-frequency and multi-constellation tracking and enables autonomous-driving systems to combine precise positioning with sensor data for enhanced performance, safety and reliability.
Following the presentations, there will be a workshop on localisation integrity for autonomous driving, with discussions on relative and absolute localisation and integrity estimation for land-based applications. All in all, this is a not-to-be-missed event for anybody interested in intelligent transport systems and autonomous driving.
The EGE prototype design includes several major components, including a novel multi-frequency, multi-constellation automotive-grade GNSS receiver. The main distinguishing feature of the ESCAPE receiver is its ability to precisely and simultaneously process signals from two different GNSS bands and from different satellite constellations. Although this capability is common in high-end professional receivers, it is cutting-edge in the automotive Tier-2 panorama.
And this: European GNSS supports smarter mobility
The receiver is also a first-of-a-kind device in its segment to support the new Navigation Message Authentication (NMA) service of Galileo, the additional anti-spoofing service to be offered by Galileo on the open E1 signal. Finally, the new GNSS receiver comes with several core signal-processing enhancements: better receiver sensitivity and tracking capability, multipath mitigation, more intermediate frequency (IF) channels and flexibility in routing IF samples, jamming detection and mitigation, and optimisation of the GNSS data flow.
The result is an ESCAPE GNSS sensor that combines a high-end GNSS technology traditionally reserved for professional applications, innovative dual-band Galileo processing, as well as all the hardware and software safety aspects that are needed to certify the component for the automotive market.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).
Image:
Earlier this month, the D28 iceberg was spotted breaking off from the Amery Ice Shelf in Antarctica. The iceberg, which is around 1600 sq km – about the size of Greater London – has now taken a 90 degree turn.
Captured by the Copernicus Sentinel-1 mission, this multitemporal false-colour image shows the before and after location of the iceberg produced by this calving event. Blue shows the iceberg before separation, taken on 20 September, while the red is where the iceberg was on 19 October after calving. Small red fragments of the iceberg can be seen floating in the vicinity of D28.
Approximately 30 km wide and 60 km long, and with a thickness exceeding 200 m, the iceberg is estimated to contain over 300 billion tonnes of ice.
Figurky Playmobil rozdávají radost miliónům dětí na celém světě. Nyní dvě z nich, které mají podobu kosmonauta ESA Lucy Parmitana, krouží na oběžné dráze Země společně s Parmitanem osobně.
Ve spolupráci s Odborem strategie přípravy a realizace projektů byla aktualizována mapová aplikace "Kotlíkové dotace v Ústeckém kraji". V mapové aplikaci naleznete vyhodnocení 1. 2. a 3. výzvy a jejich porovnání. Vše je přehledně zobrazeno po obcích či ORP.
Mapovou aplikaci naleznete na úvodní straně a také v sekci MAPY - > Rozvoj kraje a dotace- > Kotlíkové dotace.
Ve spolupráci s Odborem dopravy a silničního hospodářství a SÚS byla aktualizována mapová aplikace "Plán zimní údržby silnic v Ústeckém kraji". V mapové aplikaci naleznete pořadí údržby jednotlivých komunikací dle důležitosti, způsob jejich údržby a jednotlivé trasy posypových vozů SÚS.
Mapovou aplikaci naleznete na úvodní straně a také v sekci MAPY - > Doprava a silniční hospodářství- > Mapa pořadí zímní údržby silnic Ústeckého kraje 2019/20.
Výkonní ředitelé firem a další kolegové se již po páté sešli, tentokrát v prostředí šumavských luhů a hájů, aby si navzájem vyměnili informace a představili své vize do nadcházejícího roku 2020. V zázemí penzionu Lyer probíhal celodenní workshop s množstvím přednášek, který byl zakončen prohlídkou místního minipivovaru. Následující den účastnici ve dvou menších skupinkách vyrazili... View Article
The post 5. porada vedení firem holdingu HRDLIČKA Group appeared first on HRDLIČKA spol. s r.o. - komplexní služby v oblasti geodézie.
Vážení klienti, oznamujeme Vám, že v katastrálních územích Rybniště, Nová Chřibská a Varnsdorf probíhá revize katastru nemovitostí a v katastrálním území Staré Křečany nové mapování. Předmětem revize i nového mapování jsou zejména zápisy staveb, druhů pozemků a způsobů využití pozemků a typů staveb, kdy výsledkem by mělo být dosažení, co nejlepšího souladu katastru nemovitostí se skutečným stavem v terénu. Oznámení jsou vyvěšena na úřední desce obecního i katastrálního úřadu.
Vážení klienti, oznamujeme Vám, že v katastrálních územích Nová Chřibská, Varnsdorf a Dolní Chřibská probíhá revize katastru nemovitostí a v katastrálním území Staré Křečany nové mapování. Předmětem revize i nového mapování jsou zejména zápisy staveb, druhů pozemků a způsobů využití pozemků a typů staveb, kdy výsledkem by mělo být dosažení, co nejlepšího souladu katastru nemovitostí se skutečným stavem v terénu. Oznámení jsou vyvěšena na úřední desce obecního i katastrálního úřadu.
Vážení klienti,
z důvodu nezbytné provozní odstávky informačních systémů v pátek dne 25. 10. 2019 nebudou poskytovány údaje katastru nemovitostí, a to na žádném katastrálním pracovišti ani pobočce CzechPOINT.
Příjem podání bude probíhat v omezeném režimu. Podáním tento den nebude přidělelno standardní číslo jednací, pod kterým by je bylo možno dohledat v Nahlížení do KN. Platby za podání návrhu na vklad budeme přijímat pouze v hotovosti s vydáním zjednodušeného příjmového dokladu, nebo v kolkových známkách.
Za případné komplikace spojené s tímto mimořádným omezením provozu se omlouváme a děkujeme za pochopení.
Vážení klienti,
z důvodu provozní odstávky informačního systému katastru nemovitostí v pátek dne 25. 10. 2019 nebudou poskytovány údaje katastru nemovitostí, a to na žádném katastrálním pracovišti ani pobočce CzechPOINT. Příjem podání bude probíhat v omezeném režimu. Podáním tento den nebude přidělelno standardní číslo jednací, pod kterým by je bylo možno dohledat v Nahlížení do KN. Platby za podání návrhu na vklad budeme přijímat pouze v hotovosti s vydáním zjednodušeného příjmového dokladu, nebo v kolkových známkách. Obnovení běžného provozu se předpokládá v úterý dne 29. 10. 2019. Omlouváme se za případné komplikace.
Vážení klienti,
z důvodu provozní odstávky informačního systému katastru nemovitostí v pátek dne 25. října 2019 nebudou poskytovány údaje katastru nemovitostí a to na žádném pracovišti ani pobočce CzechPOINT.
Příjem podání bude probíhat v omezeném režimu. Podáním tento den nebude přiděleno standardní číslo jednací, pod kterým by je bylo možno dohledat v Nahlížení do KN. Platby za podání návrhu na vklad budeme přijímat pouze v hotovosti s vydáním zjednodušeného příjmového dokladu, nebo v kolkových známkách. Obnovení běžného provozu se předpokládá v úterý 29. října 2019.
Advancing BIM and GIS through 4D Digital Twins
SINGAPORE – The Year in Infrastructure 2019 Conference – 23 October 2019 – Bentley Systems, Incorporated, the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure, today presented its new digital cities initiatives, applying digital twins for more efficient city and regional operations and for more connected and resilient infrastructure. Digital twins converge assets’ 4D-surveyed and engineering representations to enable new collaborative digital workflows to serving planners and engineers in public works, utilities, property management and development, and city stakeholders. Digital twin cloud services provide an intuitive and immersive 4D environment converging digital context and digital components with digital chronology for “evergreen” infrastructure digital twins over asset lifecycles. For infrastructure professionals, BIM and GIS are effectively advanced through 4D digital twins.
Greg Bentley, CEO of Bentley Systems said, “Bentley Systems’ major technical thrust is the advancement of digital twins across infrastructure domains. This finally opens up for owners their previously “dark” engineering technologies and data (ET), for federation with traditional information technology (IT) and newly connected operating technologies (OT). Correspondingly, because the opportunities for benefits are so compelling, our major organizational initiative is our new digital cities product advancement group. Our digital cities group’s charter is both to ramp infrastructure engineering digital twins to full city scale, and at the same time to help with going digital through entry points for any engineering department in any municipality.”
“At Bentley Systems we have long and rich histories in respectively geospatial technology (GIS), and in BIM, for municipal infrastructure applications spanning capex and opex,” said Robert Mankowski, vice president, digital cities. “Today, I believe we are the leading innovator in reality modeling and in geotechnical modeling and data management. With our new cloud-based iTwin Services bringing this all together, city and campus digital twins now offer an immediate opportunity to help cities and regions solve a wide range of challenges and problems, enhancing their infrastructure performance and their constituents’ quality of life.”
Infrastructure Digital Twins for Digital Cities
City-scale digital twins begin and are updated through 4D surveying and reality modeling by ContextCapture and Orbit GT to derive as-operated 3D models from photogrammetry (including from UAVs) and/or point clouds. Reality modeling provides engineering-precise, real-world context to support planning, design, construction, and operations. Users of Bentley’s open applications (OpenBuildings, OpenSite, OpenRoads, OpenRail, OpenUtilities) can leverage this digital context to model new and improved buildings, roads, transit systems, tunnels, bridges, utilities, and more.
4D digital twins become a common and federating index for previously siloed information, without requiring source systems to change their existing environments or data formats. The foundation context for any digital twin includes reality meshes, terrain models, imagery, and GIS sources. Engineering models (from any BIM software) of buildings, streets, transit systems, utilities, and other city infrastructure, both surface and subsurface, are semantically aligned and geo-referenced to enhance the richness and relevance of digital twins over time.
Public works departments, property developers, utilities, transportation agencies, and others now have access to a full and current contextual view of the built environment. Engineering and architectural firms will be able to develop new services that contemplate updating and managing digital assets over their lifecycles. And, cities will benefit from living and current digital twins of their infrastructure and surrounding environment.
Sustainability and Resilience Digital Twins
Now, cities can combine their surface and subsurface surveys and engineering data into cohesive 4D digital twins to ensure over time their asset performance, resiliency, and sustainability. Using Bentley’s open simulation applications during asset lifecycles, for example, as-constructed buildings can be evaluated for seismic resilience (STAAD), the evacuation of vehicles and people in stations, stadiums, and other public places can be assessed and optimized (LEGION and CUBE), the impact of flooding events like hurricanes can be determined (OpenFlows FLOOD), and the suitability of subsurface conditions for urban projects can be ensured (PLAXIS, SoilVision).
Geotechnical Digital Twins: Introducing OpenGround
Bentley’s geotechnical engineering and analysis applications empower subsurface digital twins, critical for assessing and managing risks in infrastructure projects and assets. Subsurface digital twins entail modeling of the underground environment, including the geology, hydrology, chemistry, and engineering properties, made possible by Bentley’s geotechnical offerings (PLAXIS, SoilVision, Keynetix and gINT). To further enable subsurface digital twins, Bentley today announced OpenGround, a new cloud service (available end of 2019) to store, manage, report, and share data about natural ground conditions.
Water Network Digital Twins
Building upon its deep experience with hydraulics and hydrology software, Bentley is introducing OpenFlows WaterOPS for water and wastewater utility operators. OpenFlows WaterOPS provides water and wastewater utilities with real-time operational support, smart water response planning, and optimized performance and business intelligence, converging IT (GIS) with OT (telemetry, SCADA instrumentation, sensors) and ET (hydraulic simulation). WaterOPS provides real-time operational decision support extending Supervisory Control and Data Acquisition (SCADA) to help users monitor, maintain, and forecast various hydraulics and water quality scenarios.
City Planning Digital Twins
Digital twins for cities have many stakeholders, including constituents not directly involved in engineering or infrastructure. Now hosted in Microsoft Azure, OpenCities Planner delivers cloud-based, city-scale digital twins to improve stakeholder and citizen engagement and to simplify and facilitate urban development. Addressing a wide variety of potential use cases, OpenCitiesPlanner helps users, through devices like web, mobile, touchscreens, and digital billboards, to intuitively visualize and explore 2D, 3D, GIS and other data aligned with the reality modeling of the city.
Digital Co-ventures for Digital Cities
(With Topcon) Cloud-based photogrammetry processing powered by Bentley’s ContextCapture is incorporated in Topcon MAGNET Collage Web, a web-based service for publication, sharing, and analysis of reality capture data. The intrinsic Bentley ContextCapture Cloud Processing Service enables operators to upload UAV imagery direct-to-web without the need for high-end hardware requirements or IT constraints.
###
About Bentley Systems’ Digital Cities Offerings
Bentley Systems undertakes to advance BIM and GIS through 4D infrastructure engineering digital twins for digital cities. Engineers, geospatial professionals, and infrastructure owner-operators benefit from applications and digital twin cloud services that advance reality modeling (ContextCapture and OrbitGT); water, wastewater, and stormwater system planning, design and operations, and flood resilience (OpenFlows); engineering-ready geospatial urban planning and visualization (OpenCities Map and OpenCities Planner); geotechnical information management (OpenGround); and mobility simulation and analytics (LEGION and CUBE).
In both 2018 and 2019, Microsoft named Bentley Systems as Partner of the Year in its CityNext category. In 2019, ARC Advisory Group’s Engineering Design Tools for Plants, Infrastructure, and BIM market study ranked Bentley #1 in Water and Wastewater Distribution.
About Bentley Systems
Bentley Systems is the leading global provider of software solutions to engineers, architects, geospatial professionals, constructors, and owner-operators for the design, construction, and operations of infrastructure, including public works, utilities, industrial plants, and digital cities. Bentley’s MicroStation-based open modeling applications, and its open simulation applications, accelerate design integration; its ProjectWise and SYNCHRO offerings accelerate project delivery; and its AssetWise offerings accelerate asset and network performance. Spanning infrastructure engineering, Bentley’s iTwin Services are fundamentally advancing BIM and GIS to 4D digital twins.
Bentley Systems employs more than 3,500 colleagues, generates annual revenues of $700 million in 170 countries, and has invested more than $1 billion in research, development, and acquisitions since 2014. From inception in 1984, the company has remained majority-owned by its five founding Bentley brothers. www.bentley.com
Bentley, the Bentley logo, AssetWise, ContextCapture, gINT, iTwin, Keynetix, LEGION, MicroStation, OpenBuildings, OpenCities, OpenCities Map, OpenCities Planner, OpenFlows, OpenFlows FLOOD, OpenFlows WaterOPS, OpenGround, OpenRail, OpenRoads, OpenSite, OpenUtilities, Orbit GT, PLAXIS, ProjectWise, SoilVision, STAAD, and SYNCHRO are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly owned subsidiaries. All other brands and product names are trademarks of their respective owners.
“Evergreen” digital twins extend the value of infrastructure engineers’ work,
and of Bentley’s open modeling applications and open simulation applications
throughout asset lifecycles
SINGAPORE – The Year in Infrastructure 2019 Conference – 22 October 2019 – Bentley Systems, Incorporated, the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure, today announced new additions and updates to its open modeling applications and open simulation applications to advance engineering digital twins throughout asset lifecycles. Bentley’s open applications enable collaborative, iterative, and automated digital workflows spanning infrastructure professional disciplines. Now, with new digital twin cloud services, they extend business value and actionable insights throughout the construction and operations phases of an infrastructure asset.
iTwin Design Review facilitates faster design review sessions. It enables practitioners to initiate “ad hoc” design reviews in a hybrid 2D/3D environment as well as project teams working on digital twins to conduct design reviews and multidiscipline design coordination. It provides workflows:
• (for practitioners) to markup and comment directly on elements of 3D models and switch between 2D and 3D views without leaving the 3D environment
• (for projects using ProjectWise) to visualize 4D digital twins—capturing engineering change along the timeline of the project, and providing an accountable record of who-changed-what-and-when
iTwin OpenPlant Design Service provides OpenPlant users with a distributed work environment and bi-directional referencing between 2D and 3D representations of plant digital components.
Open Modeling Applications Updates
(New) OpenWindPower offers interoperability between geotechnical, structural, and piping analysis and design applications, automating data-exchange workflows between disciplines, to minimize risk in the design and operations of fixed and floating offshore wind farms. OpenWindPower enables users of a wind turbine model to check design status, perform analyses, mitigate risks, and generate insights into its predicted performance.
“OpenWindPower shortens the overall design cycle and effectively solves the problem of large design margins, reducing the cost of offshore wind power development,” said Dr. Bin Wang, deputy chief engineer of the New Energy Research Institute, POWERCHINA Huadong Engineering.
(New) OpenTower is a purpose-built application for the design, documentation, and fabrication of new communication towers, and for the rapid re-analysis of existing telecom towers for tower owners, consultants, and carriers who need to continually update equipment. OpenTower’s introduction is timed for the upcoming 5G rollout.
“With the help of Bentley’s applications, tower design and analyses are easier, faster, and reliable. It also gives our clients satisfaction, trust and peace of mind, and improves public safety,” said Frederick L. Cruz, president and CEO, F.L. Cruz Engineering Consultancy.
OpenBuildings Station Designer now includes LEGION and improves design quality by optimizing the functional space layout of the station building and the path of travel for the pedestrian.
OpenSite Designer now includes residential capabilities, supporting the conception and design of residential parceling and parcel grading, and custom parcel creation.
OpenBridge Designer now combines OpenBridge Modeler with the analysis and design features of LEAP Bridge Concrete, LEAP Bridge Steel, and RM Bridge Advanced.
OpenRoads SignCAD enhances OpenRoads to perform 3D modeling of signs within new or existing roadway designs.
Open Simulation Applications Updates
(New) Bentley Systems announced the acquisition of Citilabs, to enable its CUBE traffic simulations to be intrinsically available from OpenRoads.
PLAXIS and SoilVision geotechnical applications allow engineers to run multiple analysis methods, in either finite element or limit equilibrium, interchangeably. New interoperability with RAM, STAAD, and OpenGround enhances the quality of comprehensive geostructural solutions for integrated design and analysis of soils, rocks, and associated structures.
(With Siemens) Bentley’s OpenRoads will take advantage of Siemens’ Aimsun for micro level traffic simulation.
(With Siemens) The forthcoming OpenRail Overhead Line Designer integrates OpenRail Designer, and Siemens SICAT Master.
(With Siemens) OpenRail-Entegro Train Simulator combines Siemens Entegro and Automatic Train Control Simulation with Bentley’s ContextCapture, OpenRail ConceptStation, OpenRail Designer, and LumenRT, for rail operations digital twins.
###
About Bentley’s Design Integration Offerings
Bentley Systems undertakes to provide uniquely comprehensive and uniquely open modeling applications, and open simulation applications, for infrastructure design integration. Bentley’s open modeling applications, including OpenRoads, OpenBuildings, OpenRail, OpenPlant, OpenBridge, and OpenSite share MicroStation’s continuously advancing modeling environment to support each respective engineering and architectural discipline, and to increasingly enable automated and iterative digital workflows across all disciplines, for infrastructure conceptioneering (ConceptStation applications), design (Designer applications) and constructioneering. Bentley’s open simulation applications, including STAAD, SACS, PLAXIS, AutoPIPE, RAM, LEAP, MOSES, LEGION, LARS, and CUBE, assure and improve compliance, resilience, and throughput. Design integration for all projects is advanced by market-leading iModel-based interoperability with third-party applications.
Bentley’s iTwin Services, including Design Review cloud services for practitioners and for projects, advance BIM through “evergreen” 4D digital twins, ensuring that design engineers’ work, with open modeling applications and open simulation applications, can continue to add value by sustaining fitness for purpose throughout asset lifecycles.
In 2019, ARC’s Engineering Design Tools for Plants, Infrastructure, and BIM market study ranked Bentley #2 overall, and #1 in Electric T&D, Communications, and in Water/Wastewater. Among the Engineering News-Record Top 640 Design Firms, more than 90 percent rely on Bentley’s portfolio for design integration across multiple disciplines.
About Bentley Systems
Bentley Systems is the leading global provider of software solutions to engineers, architects, geospatial professionals, constructors, and owner-operators for the design, construction, and operations of infrastructure, including public works, utilities, industrial plants, and digital cities. Bentley’s MicroStation-based open modeling applications, and its open simulation applications, accelerate design integration; its ProjectWise and SYNCHRO offerings accelerate project delivery; and its AssetWise offerings accelerate asset and network performance. Spanning infrastructure engineering, Bentley’s iTwin Services are fundamentally advancing BIM and GIS to 4D digital twins.
Bentley Systems employs more than 3,500 colleagues, generates annual revenues of $700 million in 170 countries, and has invested more than $1 billion in research, development, and acquisitions since 2014. From inception in 1984, the company has remained majority-owned by its five founding Bentley brothers. www.bentley.com
Bentley, the Bentley logo, AssetWise, AutoPIPE, Citilabs, ContextCapture, CUBE, Generative Components, iTwin, iTwin Design Review, iTwin Services, LEAP, LEGION, LumenRT, MicroStation, MOSES, OpenBridge, OpenBridge Designer, OpenBridge Modeler, Open Buildings, OpenBuildings Station Designer, OpenGround, OpenPlant, OpenRail, OpenRoads, OpenSite, OpenSite Designer, OpenTower, OpenWindPower, PLAXIS, ProjectWise, RAM, RM Bridge Advanced, SACS, SignCAD, SoilVision, STAAD, and SYNCHRO are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly owned subsidiaries. All other brands and product names are trademarks of their respective owners.

London, U.K. - October 23, 2019 - buildingSMART International is delighted to welcome Bentley Systems to the community. Bentley Systems, Incorporated is the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure. Bentley Systems joins as a multinational member bringing a wealth of knowledge and expertise to the standards and solutions program.
At the same time, Bentley announced the availability of iModel Bridge for IFC, a generic IFC bridge that enables Bentley’s iModels to consume IFC geometry and business data. iModels are specialized containers for infrastructure information that are at the heart of Bentley’s digital twins strategy for infrastructure engineering. iTwin Services now enable iModels to export snapshots in IFC and treat IFC datasets as an input source, aligning their content for use by Bentley’s design applications. Earlier this year, Bentley announced the availability on GitHub of version 1.0 of iModel.js, an open source platform for digital twins (see imodeljs.org).
Bhupinder Singh, Bentley’s chief product officer, said: “Bentley is committed to supporting the best implementation of IFC for digital twins. We are committed to openness, and in fact we’re making plans to open source iModel Bridge for IFC. The combination of IFC support and open source principles should give the community confidence that they can create and curate digital twins without being boxed in by dark data.”
Richard Petrie, CEO, buildingSMART International said, “I am delighted that Bentley has joined buildingSMART International. As one of the major software vendors in our field, Bentley plays a critical role in our community. The vision Bentley has for iModels and open source offers the IFC community exciting new possibilities for open interoperable ways of working with digital twins.”
About buildingSMART International
buildingSMART International is a vendor-neutral and not for profit body that leads the development of open digital information flows across the built asset industry. Its mission is to proactively support industry participants who want to develop open standards for planning, design, procurement, assembly and operation of buildings and infrastructure worldwide. It provides the international network plus the necessary technical and process support. Its members, who range from across the built environment spectrum, collaborate under the buildingSMART organization. buildingSMART is engaged with other international standards bodies such as ISO, the European Committee for Standardisation (CEN) and the Open Geospatial Consortium (OGC). Its core Industry Foundation Class (IFC) standards achieved ISO approval in 2012.
Press Contact:
buildingSMART International
aidan.mercer@buildingsmart.org
Aidan Mercer, +44 7181-304-3435
Digital twins enter the mainstream – engineering firms and owner-operators
put digital twin aspirations into action
SINGAPORE – The Year in Infrastructure 2019 Conference – 24 October 2019 – Bentley Systems, Incorporated, the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure, today announced new cloud services for infrastructure engineering digital twins. Digital twins are digital representations of physical assets and their engineering information that allow users to understand and model their performance in the real world over their lifecycle. In effect, “evergreen” digital twins advance BIM and GIS through 4D.
Keith Bentley, founder and chief technology officer, said, “Today the ‘digital twin era’ is underway, and its pace accelerates every day. The early adopters we’ve worked with are already staking out leadership positions in the new digital twin economy, towards innovations in both their business processes and their business models. The advantages gained by replacing decades-old, disconnected paper-based workflows and work products with open, live, trusted, and evergreen digital twins are immense. Coupling that with an ecosystem of innovation through open-source platforms creates an unstoppable force for change in infrastructure. I can’t remember a more exciting time for the infrastructure professions or for Bentley Systems.”
New Digital Twin Cloud Services
iTwin Services enable engineering firms to create, visualize and analyze digital twins of infrastructure projects and assets. iTwin Services federate digital engineering content from BIM design tools and multiple data sources, enable “4D visualization” of digital twins, and log engineering changes along a project/asset timeline, to provide an accountable record of who-changed-what-and-when. Engineering teams are using iTwinServices to conduct design reviews, validate design data, and generate design insights. Users of Bentley’s design applications can apply the iTwin Design Review service for ad hoc design reviews, and project teams using ProjectWise can add the iTwin Design Review service to their digital workflows to facilitate overall project digital twins.
PlantSight is an offering jointly developed by Bentley Systems and Siemens, which enables owner-operators and their engineers to create living and evergreen digital twins of operating process plants. PlantSight allows operations, maintenance, and engineering to access trusted, accurate digital twin data immersively, including P&IDs, 3D models, and IoT data. It provides a single view of truth in a validated information model that facilitates situational intelligence, line of sight, and contextual awareness. PlantSightwas jointly developed by Bentley and Siemens using iTwin Services and is commercially available from either company.
iTwin Immersive Asset Service enables owner-operators using AssetWise to align asset performance data and operational analytics in their digital twins’ context, making engineering information accessible to a wider audience of users through immersive and intuitive user experiences. iTwin Immersive Asset Service shows “hotspots” of activity and change in asset status over time which leads to faster and better-informed decision-making that ultimately helps improve asset and network performance.
Digital Twins Enter the Mainstream
The ever-evolving physical reality of an as-operated asset has previously been difficult to capture digitally and keep current. In addition, the corresponding engineering information, in its assortment of incompatible file formats and constant change, has typically been “dark data,” essentially unavailable or unusable. With digital twin cloud services, Bentley helps users to create and curate digital twins to improve the operation and maintenance of physical assets, systems, and construction processes, through immersive 4D visualization and analytics visibility.
At Bentley’s Year in Infrastructure 2019 Conference, digital twin advancements featured in 24 finalist projects in 15 categories in project locations across 14 countries ranging from transportation, water networks and treatment plants, to power stations, steel plants, and buildings. Overall, 139 nominations in 17 categories cited digital twin objectives for the innovations used on their projects – a significant increase from 29 such nominations in 2018.
Digital Twin Ideas in Action
In the technology keynote at the conference, Keith Bentley was joined on stage by representatives from Sweco and Hatch, showcasing infrastructure digital twin ideas in action.
Sweco digitally integrated a nine-kilometer light rail system project for the city of Bergen in Norway. The extension of the existing system was managed entirely through 3D BIM models, from alternative studies into a detailed engineering design. The use of iTwin Services allowed Sweco to keep track of changes automatically and minimize errors, enabling 4D visualization.
Hatch completed pre-feasibility, feasibility, and detailed engineering for a sulfuric acid facility in the Democratic Republic of the Congo. Bentley’s plant design software enabled the project team to design a complete, intelligent digital twin to the most granular level of detail, moving the engineering quality processes upstream as part of the 3D modeling effort compared to traditional drawing-based quality processes. Hatch was able to reduce production ramp-up after hot commissioning, from six months to one week.
Microsoft is prototyping digital twins in its Asia headquarters in Singapore and its Redmond campus. Microsoft’s Real Estate and Security group is implementing an approach for the Digital Building Lifecycle to optimize building performance, cost-effectiveness, employee satisfaction, productivity and security. Microsoft’s efforts to create digital representations of physical assets like buildings are based on Microsoft Azure Digital Twins, an IoT service that helps organizations create comprehensive digital models of physical environments. Azure Digital Twins was released for public preview in 2018 and is now being adopted by Microsoft customers and partners globally, including Bentley for its iTwin Services. The companies are working together to create a digital twin of Microsoft’s new facilities in Singapore.
Digital Twin Ecosystem
Both iTwin Services and PlantSight were developed with the iModel.js open-source platform for digital twins, which was first launched in October 2018 and reached its version 1.0 milestone in June 2019. A primary reason for open-sourcing the iModel.js library is to foster an ecosystem of innovation for owners’ and engineers’ digital twin software developers and for digital integrators.
One such ecosystem software developer is vGIS Inc. which used iModel.js to integrate a mixed reality (XR) solution within a transportation infrastructure digital twin. Their mobile mixed reality app visually merges project design models with reality, in the field, in real-time. Users in the field can view subsurface utilities, such as pipes and cables, merged within their real-world orientation. Users simply point at objects with their mobile devices to see project design elements in this context.
Alec Pestov, vGIS founder and CEO, said, “The iModel.js platform is a great resource for developing and integrating value-added tools and services, such as the advanced augmented reality and mixed reality solution offered by vGIS. We love the seamless interoperability with iTwin Services and the frictionless development path to get to that seamless integration, and we look forward to expanding our collaboration potential, through iTwin Services.”
###
Digital Twins Defined
Digital twins are digital representations of physical assets and systems in the context of their surrounding environment, converged with their engineering information, for understanding and modeling of their performance. Like the real-world assets they represent, digital twins are ever changing. They are continuously updated from multiple sources, including sensors and drones, to represent the right-time status or working condition of real-world, physical infrastructure assets. In effect, digital twins—by combining digital context and digital components with digital chronology—advance BIM and GIS through 4D.
Benefits of Digital Twins
Digital twins enable users to visualize the entire asset – in a web browser, on a tablet, or with a mixed reality headset – check status, perform analysis and generate insights in order to predict and optimize asset performance. Users can build digitally before they build physically and plan out and de-risk maintenance activities before they carry them out in the real-world. They now have software at their disposal to envisage hundreds of scenarios, leverage machine learning to compare design alternatives or maintenance strategies and optimize across multiple parameters. Visualization and contextualization of engineering data lead to better informed decision-making and stakeholder engagement throughout the asset lifecycle.
About Bentley’s iTwin Services
iTwin Services enable project teams and owner-operators to create, 4D-visualize, and analyze digital twins of infrastructure assets. iTwin Services enable digital information managers to incorporate engineering data created by diverse design tools into a living digital twin and align it with reality modeling and other associated data, with no disruption to their current tools or processes. Users are able to visualize and track engineering change along the timeline of the project, providing an accountable record of who-changed-what-and-when. iTwin Services facilitate actionable insights for decision makers across the organization and asset lifecycle. Users make better informed decisions, anticipate and avoid issues before they arise, and react more quickly with confidence, resulting in cost savings, improved service availability, lower environmental impact, and improved safety.
About Bentley Systems
Bentley Systems is the leading global provider of software solutions to engineers, architects, geospatial professionals, constructors, and owner-operators for the design, construction, and operations of infrastructure, including public works, utilities, industrial plants, and digital cities. Bentley’s MicroStation-based open modeling applications, and its open simulation applications, accelerate design integration; its ProjectWise and SYNCHRO offerings accelerate project delivery; and its AssetWise offerings accelerate asset and network performance. Spanning infrastructure engineering, Bentley’s iTwin Services are fundamentally advancing BIM and GIS to 4D digital twins.
Bentley Systems employs more than 3,500 colleagues, generates annual revenues of $700 million in 170 countries, and has invested more than $1 billion in research, development, and acquisitions since 2014. From inception in 1984, the company has remained majority-owned by its five founding Bentley brothers. www.bentley.com
Bentley, the Bentley logo, AssetWise, iModel.js, iTwin, MicroStation, Open Buildings, ProjectWise, and SYNCHRO are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly owned subsidiaries. All other brands and product names are trademarks of their respective owners.

Class of Your Own and Bentley Institute partner in secondary school learning programs to advance skills for future infrastructure professionals
##
London, U.K. - October 23, 2019 - buildingSMART International is delighted to welcome Bentley Systems to the community. Bentley Systems, Incorporated is the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure. Bentley Systems joins as a multinational member bringing a wealth of knowledge and expertise to the standards and solutions program.
At the same time, Bentley announced the availability of iModel Bridge for IFC, a generic IFC bridge that enables Bentley’s iModels to consume IFC geometry and business data. iModels are specialized containers for infrastructure information that are at the heart of Bentley’s digital twins strategy for infrastructure engineering. iTwin Services now enable iModels to export snapshots in IFC and treat IFC datasets as an input source, aligning their content for use by Bentley’s design applications. Earlier this year, Bentley announced the availability on GitHub of version 1.0 of iModel.js, an open source platform for digital twins (see imodeljs.org).
Bhupinder Singh, Bentley’s chief product officer, said: “Bentley is committed to supporting the best implementation of IFC for digital twins. We are committed to openness, and in fact we’re making plans to open source iModel Bridge for IFC. The combination of IFC support and open source principles should give the community confidence that they can create and curate digital twins without being boxed in by dark data.”
Richard Petrie, CEO, buildingSMART International said, “I am delighted that Bentley has joined buildingSMART International. As one of the major software vendors in our field, Bentley plays a critical role in our community. The vision Bentley has for iModels and open source offers the IFC community exciting new possibilities for open interoperable ways of working with digital twins.”
About buildingSMART International
buildingSMART International is a vendor-neutral and not for profit body that leads the development of open digital information flows across the built asset industry. Its mission is to proactively support industry participants who want to develop open standards for planning, design, procurement, assembly and operation of buildings and infrastructure worldwide. It provides the international network plus the necessary technical and process support. Its members, who range from across the built environment spectrum, collaborate under the buildingSMART organization. buildingSMART is engaged with other international standards bodies such as ISO, the European Committee for Standardisation (CEN) and the Open Geospatial Consortium (OGC). Its core Industry Foundation Class (IFC) standards achieved ISO approval in 2012.
Press Contact:
buildingSMART International
aidan.mercer@buildingsmart.org
Aidan Mercer, +44 7181-304-3435
New Immersive Asset Service enables 4D visualization
and analytics visibility for “evergreen” digital twins
SINGAPORE – The Year in Infrastructure 2019 Conference – 22 October 2019 – Bentley Systems, Incorporated, the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure, today introduced new digital twin services for asset and network performance. AssetWise Digital Twin Services converge digital context, digital components, and digital chronology to provide immersive visualization and advanced analytics for enhanced decision support and improved performance of infrastructure assets. OpenUtilities Digital Twin Services use digital twins for consolidating, validating, and aligning GIS, reality modeling, performance, simulation, and other enterprise data required to effectively manage assets including power plants, substations, and entire networks.
Alan Kiraly, senior vice president, asset and network performance for Bentley Systems, said, “In order to truly gain and act on insights that impact the performance and reliability of infrastructure assets, and also of the networks which connect them, digital twins must provide live and accurate physical and engineering data across time, effectively in 4D. Through the accessibility of cloud and web services, and our open-source platform for immersive visualization and analytics visibility, AssetWise Digital Twin Services will enable all AssetWise users, and new users, to broaden the benefits of going digital more comprehensively.”
AssetWise Digital Twin Services
iTwin Immersive Asset Service
iTwin Immersive Asset Service provides immersive visualization and analytics visibility, in a rich, interactive 4D digital twin context, for decision support to sustain and improve the performance of infrastructure assets. Its cloud and web services enable owner-operators to make infrastructure engineering information accessible and comprehensible to a wider population.
AssetWise 4D Analytics
AssetWise 4D Analytics uses advanced analytics and machine learning to provide insights into current conditions and trends, and to predict future performance. Data sources can include any information accessible to AssetWise including inspections, work history and extremely large data sets such as from IoT devices. Results can be understood in the digital twin’s context using extensive graphing and dashboarding capabilities.
AssetWise Linear Analytics
Traditionally, the complexity of linear assets makes it hard to visualize and understand the vast quantity of data associated with these types of networks. AssetWise Linear Analytics takes data from many observed sources and aligns it, with engineering fidelity, to location and time on a linear network. Once aligned, using a library of linear network-aware data processing rules, users can identify trends and anomalies within rail or road networks. AssetWise Linear Analytics includes visualization dashboards that provide users with instant access to all data at any location on the network.
(With Siemens) APM for Power Plants speeds up the digitalization of power plants and provides intelligent analytics with a range of innovative offerings and managed services solutions for Asset Performance Management.
(With Siemens) Digital Services for Brownfield T&D leverages OpenUtilities Digital Twin Services for existing substation resilience, linking together the substation model, reality context, and asset data to provide access to vital information to reduce downtime and streamline problem identification and resolution, particularly in cases where substations are remote and difficult to reach.
(With Siemens) OpenUtilities DER Planning and Design Assessment Solutions
Bentley’s OpenUtilities Analysis, OpenUtilities DER Optioneering, and OpenUtilities Design Optioneering incorporate Siemens PSS®SINCAL, a power systems analysis solution providing a seamless and continuously updated environment for modeling and simulation. These solutions enable owner-operators to more efficiently model the grid for decentralized energy without compromising safety and reliability.
##
About Bentley Systems
Bentley Systems is the leading global provider of software solutions to engineers, architects, geospatial professionals, constructors, and owner-operators for the design, construction, and operations of infrastructure, including public works, utilities, industrial plants, and digital cities. Bentley’s MicroStation-based open modeling applications, and its open simulation applications, accelerate design integration; its ProjectWise and SYNCHRO offerings accelerate project delivery; and its AssetWise offerings accelerate asset and network performance. Spanning infrastructure engineering, Bentley’s iTwin Services are fundamentally advancing BIM and GIS to 4D digital twins.
Bentley Systems employs more than 3,500 colleagues, generates annual revenues of $700 million in 170 countries, and has invested more than $1 billion in research, development, and acquisitions since 2014. From inception in 1984, the company has remained majority-owned by its five founding Bentley brothers. www.bentley.com
Bentley, the Bentley logo, AssetWise, AssetWise ALIM, AssetWise Asset Reliability, AssetWise Enterprise Interoperability, iTwin, MicroStation, OpenUtilities, ProjectWise, SUPERLOAD, and SYNCHRO are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly owned subsidiaries. All other brands and product names are trademarks of their respective owners.
New Immersive Asset Service enables 4D visualization
and analytics visibility for “evergreen” digital twins
SINGAPORE – The Year in Infrastructure 2019 Conference – 22 October 2019 – Bentley Systems, Incorporated, the leading global provider of comprehensive software and digital twin cloud services for advancing the design, construction, and operations of infrastructure, today introduced new digital twin services for asset and network performance. AssetWise Digital Twin Services converge digital context, digital components, and digital chronology to provide immersive visualization and advanced analytics for enhanced decision support and improved performance of infrastructure assets. OpenUtilities Digital Twin Services use digital twins for consolidating, validating, and aligning GIS, reality modeling, performance, simulation, and other enterprise data required to effectively manage assets including power plants, substations, and entire networks.
Alan Kiraly, senior vice president, asset and network performance for Bentley Systems, said, “In order to truly gain and act on insights that impact the performance and reliability of infrastructure assets, and also of the networks which connect them, digital twins must provide live and accurate physical and engineering data across time, effectively in 4D. Through the accessibility of cloud and web services, and our open-source platform for immersive visualization and analytics visibility, AssetWise Digital Twin Services will enable all AssetWise users, and new users, to broaden the benefits of going digital more comprehensively.”
AssetWise Digital Twin Services
iTwin Immersive Asset Service
iTwin Immersive Asset Service provides immersive visualization and analytics visibility, in a rich, interactive 4D digital twin context, for decision support to sustain and improve the performance of infrastructure assets. Its cloud and web services enable owner-operators to make infrastructure engineering information accessible and comprehensible to a wider population.
AssetWise 4D Analytics
AssetWise 4D Analytics uses advanced analytics and machine learning to provide insights into current conditions and trends, and to predict future performance. Data sources can include any information accessible to AssetWise including inspections, work history and extremely large data sets such as from IoT devices. Results can be understood in the digital twin’s context using extensive graphing and dashboarding capabilities.
AssetWise Linear Analytics
Traditionally, the complexity of linear assets makes it hard to visualize and understand the vast quantity of data associated with these types of networks. AssetWise Linear Analytics takes data from many observed sources and aligns it, with engineering fidelity, to location and time on a linear network. Once aligned, using a library of linear network-aware data processing rules, users can identify trends and anomalies within rail or road networks. AssetWise Linear Analytics includes visualization dashboards that provide users with instant access to all data at any location on the network.
(With Siemens) APM for Power Plants speeds up the digitalization of power plants and provides intelligent analytics with a range of innovative offerings and managed services solutions for Asset Performance Management.
(With Siemens) Digital Services for Brownfield T&D leverages OpenUtilities Digital Twin Services for existing substation resilience, linking together the substation model, reality context, and asset data to provide access to vital information to reduce downtime and streamline problem identification and resolution, particularly in cases where substations are remote and difficult to reach.
(With Siemens) OpenUtilities DER Planning and Design Assessment Solutions
Bentley’s OpenUtilities Analysis, OpenUtilities DER Optioneering, and OpenUtilities Design Optioneering incorporate Siemens PSS®SINCAL, a power systems analysis solution providing a seamless and continuously updated environment for modeling and simulation. These solutions enable owner-operators to more efficiently model the grid for decentralized energy without compromising safety and reliability.
##
About Bentley Systems
Bentley Systems is the leading global provider of software solutions to engineers, architects, geospatial professionals, constructors, and owner-operators for the design, construction, and operations of infrastructure, including public works, utilities, industrial plants, and digital cities. Bentley’s MicroStation-based open modeling applications, and its open simulation applications, accelerate design integration; its ProjectWise and SYNCHRO offerings accelerate project delivery; and its AssetWise offerings accelerate asset and network performance. Spanning infrastructure engineering, Bentley’s iTwin Services are fundamentally advancing BIM and GIS to 4D digital twins.
Bentley Systems employs more than 3,500 colleagues, generates annual revenues of $700 million in 170 countries, and has invested more than $1 billion in research, development, and acquisitions since 2014. From inception in 1984, the company has remained majority-owned by its five founding Bentley brothers. www.bentley.com
Bentley, the Bentley logo, AssetWise, AssetWise ALIM, AssetWise Asset Reliability, AssetWise Enterprise Interoperability, iTwin, MicroStation, OpenUtilities, ProjectWise, SUPERLOAD, and SYNCHRO are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly owned subsidiaries. All other brands and product names are trademarks of their respective owners.
Dne 22. 10. 2019 od 14 h se bude v seminární místnosti (přízemí) naší knihovny konat seminář k citační databázi Web of Science. Naučíte se efektivně pracovat s touto databází při tvorbě rešerše, dozvíte se o užitečných nástrojích jako je citační manažer EndNote.
Kapacita místnosti je omezena, na akci je nutné se registrovat. Pokud si donesete vlastní notebook/tablet, budete si moci vše i prakticky hned vyzkoušet.
Dne 22. 10. 2019 od 14 h se bude v seminární místnosti (přízemí) naší knihovny konat seminář k citační databázi Web of Science. Naučíte se efektivně pracovat s touto databází při tvorbě rešerše, dozvíte se o užitečných nástrojích jako je citační manažer EndNote.
Kapacita místnosti je omezena, na akci je nutné se registrovat. Pokud si donesete vlastní notebook/tablet, budete si moci vše i prakticky hned vyzkoušet.
The post T-MAPY se se svými uživateli tentokrát potkaly v Přerově appeared first on T-MAPY spol. s r.o..
V Praze se uskuteční již dvacáté páté setkání zákazníků a partnerů firem GEPRO a ATLAS, které společně zahájí Zdenek Hoffmann a Martin Volný. První den setkání – 22. října 2019 10:00-10:20 Zahájení 25. ročníku setkání GEPRO a ATLAS – Z.Hoffmann, M.Volný 10:20-12:30 Hlavní přednášky dne moderuje Zdenek Hoffmann DTM ČR a elektronizace stavebního řízení – Martin Kupka (PS PČR) Digitalizace stavebního řízení – […]
The post Podrobný program jubilejního 25. ročníku setkání GEPRO a ATLAS 2019 appeared first on Zeměměřič.

The European Commission’s Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (DG GROW) has issued a Prior Information Notice (PIN) for a planned call for a new service contract on using satellite-based augmentation systems (SBAS) for applications such as road tolling or pay-as-you-drive insurance with the aim of developing an appropriate integrity concept for payment/liability critical applications focused on the road sector.
When defining the service, the contractor shall consider to which extent evolutions of the EGNOS services, user equipment or the service provision scheme are needed to provide the required integrity assurance. Integrity in this context refers to the level of confidence that can be put in the navigation solution. The On-Board Unit (OBU) will have to allow all the features necessary to trust the position in situations where enforcement, payments and related claims are involved.
Since the E-GNSS sensor may just be one component among other sensors, the project shall address what other technologies or components may be needed on top of the current GNSS signals, and what would be the contribution of each element to the overall integrity assurance.
The contract notice will be published in the near future. More information can be found in the Prior Information Notice (PIN).
Pay-as-you-drive (PAYD) and pay-how-you-drive (PHYD) insurance are emerging applications in the road sector that rely on how much, where, when and how the road user drives. These applications make it possible to tailor the premiums paid by the policyholder.
Read this: European GNSS supports smarter mobility
In the future, other road applications such as reconstruction of accidents, mobility as a service, traffic infraction monitoring and fine management, traffic congestion monitoring, automatic charging in car parks, etc. may also rely on the vehicle’s position and navigation data.
EGNOS is the European SBAS and augments GPS L1 C/A civilian signal by providing corrections and integrity information for positioning and navigation applications over Europe. EGNOS Version 3, set to enter in service in the near future, will augment both GPS and Galileo constellations in the L1 and L5 bands and will extend the service area to the entire landmasses of EU Member States.
Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).

V pátek nás na vždy opustil geograf (hydrolog) a kartograf, pro mnohé z nás učitel a mentor doc. Kaňok. Pokud byste se s ním chtěli rozloučit, pohřeb proběhne ve čtvrtek 24. října od 15:00 ve Frýdlantu nad Ostravicí.
The post Doc. RNDr. Jaromír Kaňok, CSc. (parte) appeared first on GISportal.cz.
EPCOR is an owner-operator of electrical, natural gas, and water transmission and distribution networks in Canada and the United States. Electric distribution systems such as EPCOR’s typically have over 100,000 assets spread out along the streets and alleys of their service territories. These assets degrade with weathering and electrical loading, and many typically have useful lives of 35 to 45 years. EPCOR historically employed an age-based and condition-based replacements strategy, waiting for assets to rust, leak, or fault electrically, to where simple field repairs or splices were no longer sufficient, before considering replacement.
A simple demographic analysis of their installed infrastructure in 2015 predicted a 74% increase in the number of assets reaching end of life over the next 10 years compared to the preceding 10 years. With a new Performance Based Rate (PBR) structure in 2018, EPCOR saw its capital spending effectively capped at an average of the 2013-2016 spend. EPCOR would need to maintain system reliability with the resources it had despite the forecasted increase in asset failures. To address these challenges, the EPCOR asset management team implemented an ISO 55000 risk-based asset management process using its AssetWise Asset Performance Management system. The system captures asset conditions and tracks asset failures to manage warehousing, direct crews, and capture costs to assets, projects, and commercial jobbing.
The project’s objective was to quantify the health of the assets and identify when to proactively replace assets that are key to optimizing safe and reliable system operation. Once implemented, this solution would minimize unplanned outages and the stress that such outages place on the rest of the aging infrastructure, and in turn was expected to reduce collateral damage to other assets. The project team conducted an asset condition assessment by statistically analyzing more than 10 years of data to develop failure probability curves and to define the statistical relationship between asset condition and probability of failure.
Integrating SCADA data provided valuable electrical loading information in near real time. All of the information gathered from various systems, including the SCADA data, was used to create an asset health index to score the assets out of 100%, and the resulting asset health scores were shared across the organization on dashboards. By combining the health scores with the failure probability curves, the team derived a more accurate probability of failure and identified assets at risk. An in-depth analysis of AssetWise work order history also provided an understanding of the consequence of asset failures on replacement cost, damage to adjacent assets, safety, and environmental cleanup costs. When coupling this information with outage times and the electrical load data, they could predict cost and potential enterprise risk (known as annual risk cost), which provided valuable input to capital asset budgeting.
The project team analyzed 117,000 unique assets within six asset classes: aerial and underground transformers; switching cubicles; poles; network transformers; and underground cables. The current annual risk cost of all six evaluated asset classes totaled CAD$ 95 million. In addition, EPCOR’s System Average Interruptions Duration Index (SAIDI, an average measurement of how long each customer was without power) for defective equipment related outages was reduced by 43% to 0.153 hours/customer from the 2016 SAIDI score. The total SAIDI score was 0.833, well below the regulated threshold of 1.15 hours/customers.
EPCOR is also realizing sustainable, long term advantages from this project. The analysis work and its tangible results facilitated strengthening of their long-term planning for capital investments, creating opportunities for further cost savings through the ability to use long-term contracts and improved bargaining power.
“This new process helps EPCOR identify the right actions or interventions to be applied to the right assets at the right time, improving the overall value of the services delivered by EPCOR to its customers,” said Stephen Seewald, manager, asset performance and risk management, EPCOR Utilities. “It also helps us to provide better control over system reliability and cost for the city of Edmonton, which is essential for economic development.”
The Grade-Separated Junction of East Yan’gang, east of the city of Shenzhen, is the intersection of four high-speed roads designed to provide access to Shenzhen’s Yantian Port and to the downtown area. The junction has a total length of 10.5 kilometers and includes 10 new ramps, 8 tunnels, and 16 bridges. With a total investment of RMB 1.47 billion, it will be one of the most complex grade separation projects and set the benchmark for future infrastructure projects in Shenzhen.
Shenzhen Highway Engineering Consultant Co., Ltd. is the first organization in China to have deployed Bentley’s iTwin Services to build digital twins for roadway design and operations. The team federated a large amount of data to support advanced multidiscipline BIM workflows with Bentley’s open modeling and simulation applications, including reality models, photogrammetry, geotechnical data, site information, grading, traffic monitoring, and business data. The team used ProjectWise as the collaborative platform so that the multidiscipline team could share and exchange models and information during design and construction.
ContextCapture was used to create 3D reality meshes of existing conditions for field measurement, land acquisition, demolition management, and earthmoving calculations. The team used Pointools to process point-cloud data and LumenRT to produce easily understandable visualizations. OpenRoads Designer, OpenBridge Modeler, ProStructures, and MicroStation were used to model roads, bridges, tunnels, and rebar.
With digital twins, the team could analyze the impact of road closures on traffic and the surrounding environment to help alleviate the impact of construction. Additionally, mixed reality workflows made it possible to analyze risk factors and verify the feasibility of the construction plan, including ensuring that municipal pipelines could be accurately located to avoid damage to existing facilities during construction.
As a result of using Bentley’s digital twin solution, Shenzhen Highway Engineering Consultant Co., Ltd. estimates it will improve overall communication efficiency by more than 15% and significantly enhance design efficiency. Once the project is completed, Shenzhen Highway Engineering Consultant Co., Ltd. will continue to leverage digital twins to support operations and maintenance, and as a foundation for future capital projects.
“Based on Bentley’s engineering design and simulation solutions and the use of digital twins, we have been able to achieve uniform conversion and integration of data from satellite images, laser point clouds, BIM models, and site information. This has allowed us to improve communication, collaboration, and design efficiency on the project,” said Lingyu Zhu, deputy general manager, BIM technology department.
Utilities are increasingly adopting digital twin workflows to improve cross-discipline collaboration in project delivery, to streamline maintenance and inspection work, and to meet compliance reporting requirements. Among the Year in Infrastructure 2019 nominees are two power operators that are implementing digital twins: Sargent & Lundy on the USD 853 million Big Bend Power Station in Tampa, Florida; and Companhia Paranaense de Energia (Copel) for its Copel dams safety plans in Brazil.
In 2018, Tampa Electric Company (TEC), an Emera company providing power to more than 750,000 customers across West Central Florida, initiated a modernization project for its Big Bend Power Station to convert from a coal to an efficient gas-fired combined-cycle facility. The Big Bend Power Station is located on a 1,500-acre site with four coal-fired units and a combined output of more than 1,700 megawatts. The four generating units were added over 15 years, and a natural gas peaking unit was installed in 2009 to provide additional power during peak demand.
To continue providing safe, reliable, and cost-effective power while meeting growing demand, TEC initiated the modernization project to eliminate coal consumption in generating electricity, and additionally sought to reduce water in the generation process, produce less wastewater, eliminate solid waste, and reduce air emissions. The project includes repowering Unit 1 into a combined-cycle generating facility with two combustion turbine generators (CTGs), two heat recovery steam generators (HRSGs), and major modifications to repower the existing Unit 1 steam turbine generator (STG). The project scope also includes associated transmission and interconnection facilities and natural-gas infrastructure.
Sargent & Lundy leveraged the full modeling functionality of MicroStation to continuously update the digital twin, which was created from multidiscipline design models and more than 2,000 files. MicroStation was also used to incorporate point-cloud data from laser scans of physical assets that were then enhanced with engineering components and as-built designs.
This digital context was used to design the plant with OpenBuildings and Bentley’s open simulation applications, including STAAD and ProStructures, were used to optimize the integration of pipe support auxiliary steel and to reduce field welds on galvanized steel, saving the project more than USD 500,000. Designs were also enlivened for visualization with the help of LumenRT.
Using a digital twin led to improved collaboration and increased focus on implementing best practices to ensure on-time delivery. A digital twin was used for visualization and design review workflows, which allowed the team to get immediate feedback with internal and external stakeholders, achieve an estimated 40% reduction in response time, and improve constructability, site safety, and long-term maintenance planning. These collaborative model reviews reduced drawing release quantities, saving approximately 200 resource hours. Also, leveraging digital context improved design accuracy by 20% and reduced site visits by half.
“Innovating with digital twins is a game-changer that allowed our designers to align all the engineering data into a single source of truth model so that they can design with existing conditions and see the impact of changes immediately,” said Edward Hanko, design manager, Sargent & Lundy. “Having this capability was invaluable, as it allowed our engineers to efficiently problem solve and be more confident in the impact of their designs.”
Recent legislation in Brazil required Copel to implement new safety requirements for the dams that it operates. Copel operates 30 of its own plants and has interests in 11 others, including 24 hydroelectric, two thermoelectric, and 15 wind power plants, with a combined installed capacity of 5,675 megawatts. Copel also has 4,647 kilometers of transmission lines and 45 substations to serve more than 4.6 million distribution customers and provides 33,495 kilometers of fiber optic and service to serve 178,000 telecommunication consumers. For many years, Copel has pioneered environmental impact studies and construction reports on hydroelectric plants and is committed to sustainable development.
The new federal legislation went into effect in 2010 and established a new national dam safety plan, the Política Nacional de Segurança de Barragens (PNSB), applicable to dams intended for storing water for all uses, including energy generation. The PNSB requires that a set of documents be drawn up for each dam to help management determine the safety of the structure. The documentation contains technical data from construction, operations, and maintenance, and serves as a tool for safety planning and management.
Until 2018, Copel had only a representative portion of the technical data of the oldest dams, and the majority were hand-drawn drawings, created when the dams were built, that have been damaged over time. Additionally, some of the dam structures had been renovated and altered without systematically recording the changes, creating concern that the drawings were no longer valid.
The team overcame many challenges to prepare documentation for the PNSB, including interpreting old drawings, overcoming difficult-to-access locations for surveying, and compiling decentralized information. Despite thorough surveying – electronic measuring tape, use of photographs for key elements – it has never been possible to record all details of these complex dams. The dam, spillway, power house, and some elements of the generation circuit, such as the water intake and penstock, are difficult to access, often due to rugged topography and naturally dense vegetation.
Copel determined that a new strategy was needed. Since most of the dam information was dark data, the team determined that they needed to create digital twins for each dam to federate reality modeling context, historical data, and new data that would be produced from Bentley’s open modeling and open simulation applications. Knowing that they would eventually need to comply with the Dam Safety Plan (PSB) for all 10 of its dams, Copel decided that the first step would be to conduct a pilot project and develop digital twins for three small hydroelectric plants: Marumbi, Chaminé, and Salto do Meio.
Surveys were conducted using unmanned aerial vehicles and all images were processed using ContextCapture. Additionally, the team also used OpenBuildings and Descartes to help build the digital twin. They extracted information for terrain and level curves and used OpenRoads Designer and MicroStation to complete the models. The team then created plan views, cross-sections, and visualizations with previously configured dynamic cross-section tools so that line thicknesses, hatching, and color met Copel’s engineering standards. Lastly, LumenRT provided a simple and intuitive interface to visualize and communicate information about each of the plants.
The use of drone surveys greatly increased the quality and richness of detail yet also reduced the time required to complete the work for each dam to 16 hours from the 120 hours typical of previous incomplete surveys. The team not only met the deadlines for the three plants piloted using this new digital twin process but were also able to meet the deadline for all 10 plants, surpassing customer expectations for quality, richness of detail, and time to capture and document the information. The new process not only helped to speed the time to create the reports and meet the PSB deadline, but also reduced labor resources to support the process by 87%.
“The use of this software, together with drone fly-through, provided rapid and detailed technical inspection to evaluate the safety of dams and related structures, allowing their registration and digital recording. Now, we have an updated, digital, technical archive, which makes it easy to manage our assets,” said Roberto Seara, manager of the department of civil engineering, engineering superintendency and Copel generation and transmission projects.
Italferr S.p.A is a company of the Italian State Railways Group Ferrovie dello Stato Italiano and has been at the forefront of Italian and international large-scale infrastructure projects for 30 years. The organization specializes in conventional and high-speed rail, metropolitan and road transport, and port facilities. The company’s scope includes engineering design, project management, construction site management and supervision, and acceptance testing and commissioning.
After the collapse of the Morandi Bridge in August of 2018, the Pergenova Consortium Company in the city of Genoa, Italy commissioned Italferr to develop the executive design phase of the new viaduct over the Polcevera River to replace the damaged 200-meter section. The bridge collapse, which received worldwide attention, destroyed the buildings below it and resulted in many fatalities. The incident raised concerns about the condition of bridges in Europe, with studies suggesting that many need to be renovated or replaced because of corrosion and structural deterioration.
The project, estimated to cost EUR 20.2 million, is scheduled to be completed in June of 2020. To limit the amount of time that the bridge will be out of service, the project team needed to complete the project as quickly as possible on the same footprint as the previous bridge and meet regulatory adjustments for new Italian standards for the cross-section of the deck and the curvature radii of the junctions and entrances. The new bridge’s main deck will include a continuous girder with a length of 1,067 meters, 19 reinforced concrete piers, and 20 spans, compared to the previous bridge, which had eight piers and nine spans.
To meet the tight schedule, Italferr created a digital twin to support all BIM workflows through the executive design phase. Digital twins have broad application in advanced design environments, where fully functioning virtual models are developed that help the design team collaborate and simulate the performance of an asset at any point in its design. The digital twin was enabled through a connected data environment built on ProjectWise that managed the flow of data coming from the multidiscipline project team using Bentley’s open modeling and open simulation applications. Utilizing MicroStation, OpenRoads, and OpenBuildings Designer, the project team created digital models of the terrain, road, and related civil works, as well as the mechanical and electrical systems.
To simulate construction, the team used SYNCHRO to understand critical works and other complex situations. SYNCRO’s 4D digital construction environment made it possible to visualize, analyze, edit, and track the evolution of the project dynamically through its various implementation phases. The team linked the iModels dynamically to SYNCHRO to identify and remove potential conflicts, which made it possible to virtually simulate and optimize construction.
Bentley’s applications have helped the team accelerate design decisions and improve the quality of design, while at the same time reducing design cost, minimizing changes, increasing the accuracy of data, and improving the efficiency of project team collaboration. The accelerated design will help to restore Genoa’s road system, which is essential to the social and economic balance of the city, by June of 2020. The new bridge will restore broken transportation connections within the city, offering a modern structure capable of increasing the flow of goods and vehicles. The design of the bridge will help restore public confidence, greatly improve road traffic safety, and ensure the durability of the bridge structures.
“The BIM methodology used in this project follows the digital twin approach,” said Daniela Aprea, project engineer and BIM manager with Italferr. “The visibility and insight it enabled allowed us to significantly change the way in which we deal with the design and management of infrastructure work.”
SINGAPORE - The Year in Infrastructure Conference, October 21, 2019 - Digital Construction Works, Inc. (DCW), a new digital automation, integration, and digital twinning services company announces the launch of its Partner Community, including partners to provide services and partners to provide fit-for-purpose solutions. Advancements in the construction industry require a combination of people, processes, and technology to enable the construction industry to more efficiently, rapidly, and successfully transform to digital operations.
Digital Construction Works and its Partner Community enable DCW customers to digitally transform their construction operations through combined services, comprised of next-best practices, work packaging, digital twins, digital workflows, technology, and other outcomes-based services to improve operational efficiencies and better digital project delivery. DCW offers workflow solutions that serve as an ‘open-platform’ and integrate with a wide variety of products and deliverables from various suppliers.
The partnership between DCW and O3 Solutions, Inc. is already delivering customer success based on DCW’s Advanced Work Packaging (AWP) solution. Through its Partners Community, DCW supports a global network of service providers who engage in projects with customers to deliver digital workflows and successful value-based outcomes.
“From a technology perspective, digital construction can never actually happen if it is done in isolation or limited to a single provider’s portfolio. We need people, applications, tools, and machines to operate in harmony. That’s the Community we are building.”, said Scott Langbein Industry Partner Director for DCW.
Advanced Work Packaging is a recognized best practice of the Construction Industry Institute (CII) that focuses on the improvement of project safety, productivity, and predictability through the alignment of engineering, procurement, and construction planning, activities, and deliverables. AWP defines expectations of each applicable stakeholder group throughout the project lifecycle, from concept to construction to commissioning. AWP has been proven by CII to improve field productivity by up to 25% and reduce total install costs by up to 10%.
“I refer to AWP as a ‘modern production system’ because it really encourages new methods of production, rather than blindly accepting ‘time honored’ approaches and attempting to expend fewer worker hours. It even considers how design is done and, eventually, how the supply chain will collaborate to increase output,” said Stephen Mulva, director, Construction Industry Institute, University of Texas, Austin. DCW is pioneering a next-generation project execution solution that combines AWP and reality modeling to facilitate an outcomes-based model and the delivery of a digital twin during construction. The DCW solution uses digital threads to integrate, validate and automate the change management of data from multiple project IT systems and stakeholders throughout the supply chain and over the project lifecycle to create and maintain an evergreen AWP virtual construction model.
To optimize client returns, DCW is providing an integrated construction management solution with O3’s industry industry-leading AWP analytics, constraint management, and field productivity measurement tools. The combined digital construction solution will facilitate AWP digital workflows and capabilities for the development of the path of construction, work package creation and constraint analysis, integrated materials management, status visualization, predictive analytics, field progressing and completions, and commissioning. Additionally, DCW will offer a ‘planned versus actual versus as-is’ situational awareness service involving virtual construction models, O3 dashboards and analytics, continuous surveying, and digital twinning.
“The O3 software drives AWP into the supply chain by measuring key performance indicators of constraints, deliverables, work packages, and field productivity. With the ability to benchmark and measure performance with O3, we’re going to usher in a new era of visibility and integrated digital project delivery based on an outcomes-based model and the development of digital twins during construction.”, according to Eric Crivella – Director of Business Development and an AWP subject matter expert at DCW.
O3 Solutions is an industrial construction technology company providing agile project management, and Advanced Work Packaging reporting and analytics is excited to participate in the DCW Partner Community. “DCW and the skilled talents of its team offer subject matter expertise in work packaging, constraint management, and data collection to support the AWP Best Practice,” stated Josh Girvin, CEO of O3 Solutions. “We are eager to work with DCW and its services team to deliver a robust Advanced Work Packaging solution that supports visibility and accountability through the entire lifecycle of a project.” Mr. Girvin is proud of the new partnership and looks forward to continuing a rewarding relationship between the two companies.
DCW and O3 Solutions are working together to provide a complementary solution to collect real-time project data using reality capture technology to identify any potential issues to mitigate risks to construction productivity on capital projects. This solution includes providing reports and dashboards to help manage work packaging and workface planning activities.
Founded in 2019, Digital Construction Works (DCW) provides digital automation, integration, and “twinning” services, around fit-for-purpose software and cloud services from Topcon Positioning Group, Bentley Systems, and other software vendors, to realize the breakthrough potential of constructioneering for industrializing construction. DCW is transforming the construction industry from its legacy document-centric paradigm and simplifying and enabling digital automated workflows and processes, technology integration, and digital twinning services for infrastructure. company. DCW is a Bentley Systems and Topcon Positioning Group joint venture www.digitalconstructionworks.com
The Three Gorges Dalian Zhuanghe (300 megawatt) offshore wind farm will be built in the sea of Zhuanghe, Dalian, Liaoning province. Once operational, the plant will supply an annual on-grid energy capacity of 714 million kilowatt hours, meeting the annual electricity demand of 450,000 households. When compared with coal-fired power plants on the same scale, the Three Gorges wind farm will annually save about 230,000 tons of coal, reduce 55,300 tons of ash and slag, and reduce the emission of 6,000 tons of sulfur dioxide and 637,000 tons of carbon dioxide. Shanghai Investigation, Design & Research Institute Co., Ltd. (SIDRI) is responsible for the overall survey and design of this large project with Goldwind Science & Technology optimizing the anti-ice design for the integrated offshore wind turbine support structure.
The understaffed team faced several challenges, including a complicated design and a short design cycle. The most critical challenge, however, was the presence of floating ice during winter months, which added a complexity previously unseen in the field of offshore wind power in China. To help the structures withstand the impact of the floating ice, engineers needed to collaborate to design an anti-ice cone that would protect the single-pile foundation in the winter yet not adversely impact wave force performance in non-winter months.
A SACS interface with the turbine manufacturer (GH)Bladed produced an integrated design for the support structure, enabling engineers to balance the anti-ice design for winter and the wave force performance in non-winter seasons, and optimize the entire support structure. A multidiscipline design team (covering hydraulic, electrical, structural, HVAC, water, drainage, architecture, and construction) used OpenBuildings, OpenPlant, ProSteel, SACS, MicroStation, and Navigator for their modeling work. ProjectWise was used to manage the documentation and models and to facilitate collaboration from the contributing engineers.
The integrated design process using Bentley’s open modeling and simulation applications helped SIDRI complete the project three months ahead of schedule, while improving the design quality. SACS helped the Goldwind engineers streamline their workflow, reducing design time by 200 working days.
This first-of-its-kind project lays the foundation for future integrated design methods for China’s offshore wind anti-ice design projects. As well as the substantial environmental benefits, the project realized an RMB 50 million savings in overall project costs, and it is expected that at least RMB 5 million in savings will be achieved on each subsequent project.
“Using Bentley’s SACS, we were able to develop an effective and integrated design for the support structure for the offshore wind turbine,” said Yiming Zhou, design delivery manager of Offshore Wind Power Design Research Institute. “SACS has helped us effectively reduce the fatigue load of infrastructure design by more than 30%, saved the cost of designing supporting structures by more than 10% on average, and achieved a savings of RMB 50 million in supporting structure costs. The method we used has also contributed to promoting the wind power development in China’s ice area.”
The Thames Tideway Tunnel will capture and store raw sewage and rainwater from London’s 150-year-old sewer network, preventing overflow into the River Thames. It is the largest infrastructure project ever undertaken by the UK’s water industry.
The 25-kilometer-long tunnel is split into 24 construction sites, 11 of which are located along the river’s banks. The project involves 12 design disciplines and numerous supply-chain companies, which makes coordinating and communicating with all project stakeholders vitally important to organize construction successfully, particularly within the constraints of tight scheduling and small, challenging project sites.
The Costain, VINCI Construction Grands Projets & Bachy Soletanche (CVB) JV is pushing the boundaries of conventional construction to deliver value, right-first-time quality, and sustainability, all while leaving a legacy that will benefit Londoners for more than a century. The transformational vision of the Tideway project actively promotes innovation to challenge traditional ways of working and reduce complexity. Along with many other Bentley products, the CVB JV employed SYNCHRO 4D to streamline construction planning activities and to improve progress tracking and management. This new workflow combines 3D models with the construction schedule to produce a 4D plan that shows how the project will develop over time.
Implementing 4D collaborative planning enabled the Tideway construction teams to effectively manage highly congested sites with multiple, concurrent activities and different subcontractors who need to work together in tight confinement. Regular planning sessions among the the disciplines allowed the team to identify and resolve clashes and choose the optimum construction methodology, which reduced delays and field-change requests.
The planning sessions also involve value-engineering activities that consider all design, environmental, health and safety, logistical, cost, and time constraints, and providing the client and specialist subcontractors with the opportunity to influence and improve early decision making.
For example, during a one-hour start-up meeting between CVB and Network Rail, the team discussed a number of key interactions relating to safety and major deliverables. To ensure an opitmial solution was achieved, the team reviewed the site conditions at a number of key schedule milestones, and took measurements on the 4D model to identify asset protection requirements and explore potential crane locations. As a result, the work schedule was revised to avoid unnecessary set up and relocation, compressing the time to complete this phase by 50%.
To date, the combination of 4D with lean construction methodology has reduced the overall construction program by 30 days, achieving GBP 1 millon in direct and indirect cost reductions. The 4D construction models have also been a particularly useful method to engage local residents, community groups, and councils – individuals unfamiliar with interpreting traditional technical drawings and reports.
“Bentley’s 4D modeling application has resulted in considerable time and cost savings of more than GBP 1 million on Britain’s largest-ever water infrastructure project,” said Sandra Reis, BIM manager at Tideway. “The technology shortened design time, reduced resource hours, made meetings more productive, and eliminated tedious tasks. The collaborative approach achieved through SYNCHRO 4D has been key to involving the client, designers, and fabricators during early decision making.”